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ABSTRACT 

Aiming at examining the cascading effects of the failure of Critical Infrastructure (CI), this work-in-progress 

research introduces an improved System Dynamics model. We represent an improvement over the previous 

models aimed at studying CIs interdependencies and their cascading effects. Our model builds on earlier models 

and corrects their flaws. In addition to introducing structural enhancements, the improvements include using 

unpublished data, a fresh look at a previously collected dataset and employing a new data processing to address 

and resolve some longstanding issues. The dataset was fed to an optimisation model to produce a new dataset used 

in our model. The structure of our SD model, its dataset and the data processing techniques we employed to create 

this dataset are all described in the study. Although the model has passed the fundamental validation criteria, more 

validation testing and scenario exploration are yet to be conducted. 
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INTRODUCTION 

Background 

Systems and resources required for society’s basic needs, like energy, water, transportation, communication, 

healthcare, etc., are called Critical Infrastructure (CI). The economy, public safety, and public health might suffer 

significantly if one of these CIs fails. Such failure may, in some circumstances, have a domino effect on other CI 

systems. The breakdown of CIs systems might significantly impact modern society. Both natural and man-made 

risks can cause CIs failure. A CI failure can have devastating effects, leading to significant financial losses, 

fatalities, and damage to CI systems (U.S. Cybersecurity and Infrastructure Security Agency 2020).  

Hurricane Katrina’s massive power outages in 2005 resulted in substantial financial losses, with projected 

damages to the energy infrastructure alone totalling $3.5 billion (Casey et al. 2020). Furthermore, almost 225,000 

consumers lost power due to the 2015 cyberattack on Ukraine’s power infrastructure, and much more severe 

effects may have ensued (Polityuk et al. 2017). Accordingly, it is crucial to improve the resilience of CIs to reduce 

the risk of failure and possible cascade effects. This entails, among other measures, investing in CIs modernisation 

and enhancing cybersecurity to protect against online attacks and other potential threats. To reduce the risk of loss 

and mitigate the effect of any failure, it is crucial to ensure that CIs are well-planned, maintained, and updated. 

Ongoing research, CIs investments, collaborative strategies among stakeholders, and identifying the most 

vulnerable CIs are all crucial in managing and reducing the risks of CI failures. 

Purpose and objectives 

This ongoing research paper’s primary goal is to present an updated and improved System Dynamics (SD) model 

for investigating the cascading impacts of CI failures. By correctly representing CI activities and utilising actual 

data to support the model’s assumptions, the proposed model responds to critiques of earlier models. The model’s 
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capability to simulate the possible cascading consequences of failures in one CI on all others can aid stakeholders 

in making well-informed decisions about risk management and disaster response. The article describes the 

structure of the model, the data used to construct and validate it, and some preliminary validation tests that the 

model has successfully undergone to achieve this objective. 

A secondary goal of the model is to provide a framework for future research on the impact of CI failures. The 

model may be used to simulate various situations, including the results of targeted attacks on a specific CI or 

simultaneous failures in several CIs. The creation of risk management techniques can be influenced by such 

scenarios, which can assist in identifying possible weaknesses in CI systems. The model’s adaptability makes it a 

helpful tool for ongoing study since it enables the integration of new data as it becomes available. 

SD in the context of CI 

Several techniques are available for modelling CIs failure cascading effects, including SD (Eusgeld and Kröger 

2008; Ouyang 2014). SD is a simulation modelling methodology with applications in multiple domains, including 

CI modelling. It is particularly suited for representing intricate systems with feedback loops and dynamic 

interrelationships between components (Forrester 1961; Sterman 2000). In the context of CI modelling, SD can 

aid in comprehending the impact of disturbances to one system component on the entire system, leading to adverse 

events or cascading effects. One significant benefit of the SD methodology is its ability to demonstrate the 

causality between variables in an easily understandable manner. 

In a comparative analysis of nine methods for modelling and simulating CIs’ interdependencies, Eusgeld and 

Kröger (2008) concluded that SD modelling was the most suited approach for interdependency analysis and 

system modelling, with low data requirements. SD is flexible enough to model physical and cyber 

interdependencies and can handle confined and cascading failures. Furthermore, SD modelling is highly effective 

in monitoring and analysing failure events and information. 

In order to gather a broad selection of relevant literature, a search was performed on www.semanticscholar.org 

using the search string: “Critical Infrastructure” AND “Cascading Failures” AND “System Dynamics”. The 

results were sorted in descending order of relevance and limited to the past ten years. To ensure thoroughness, the 

results were reviewed until no further relevant studies were identified. Numerous papers have addressed the CI 

failure cascading effects in the last decade. 

Armenia et al. (2014, 2018) and Cavallini et al. (2014) presented an approach for modelling the effects of CI 

failures due to unexpected events. The CIs of Transport, Energy and Telecommunications were modelled using 

SD. The model was developed as a component of a European Commission-funded project focused on developing 

a tool to evaluate the impacts of critical events. The project’s ultimate objective was to provide decision-makers 

with a sophisticated tool to help them mitigate adverse effects in emergencies. 

Laugé’s doctoral research (2014) and Laugé et al. (2015) focused on a set of eleven CIs based on the European 

Commission’s (2005) definition. These CIs were Energy, ICT, Water, Food, Health, Financial, Public and legal 

order and safety, Civil administration, Transport, Chemical and nuclear industry, and Space and research. In Laugé 

et al. (2013) and Laugé’s doctoral thesis (2014), they developed an SD model that concentrated on the CIs of 

Energy, Food, and Transport. The model served as an example of a tool that allows managers to simulate various 

scenarios with both short- and long-term perspectives and analyse the effects of different management policies. 

The model aims to provide managers with a better understanding of the dependencies among CIs and how their 

effects evolve. According to Laugé’s findings, the model could serve as a training tool to enhance the 

understanding of crisis and CI managers regarding the complexity of existing dependencies among CIs and the 

consequent impacts of their failures. 

Canzani (2016), Canzani et al. (2016) and her doctoral research (2017) employed an SD model to investigate the 

cascading effects of failures in the CIs of Energy, ICT, Water, Financial, and Transport due to a cyber-attack or 

disruption in ICT. The model is based on the Susceptible, Infectious, and Recovered (SIR) model from 

epidemiology (Sterman 2000), where the Susceptible, Infected, and Recovered represent the Running, Down, and 

Recovered operations in a CI, respectively. Canzani extracted a table of constants from Laugé et al. (2015) to 

prepare a matrix of constants, representing the effect of failure in one CI resulting from a less than two hours 

failure in another. This matrix was incorporated into Canzani’s model to regulate the failing CIs’ breakdown rates. 

Canzani used the same SD approach in Canzani et al. (2017) and Canzani and Pickl (2016). 

Farstad, in his master’s research (2018), critiqued the analogy of Canzani’s model to the SIR model and argued 

that the less than two hours failure matrix is not applicable for all disruption durations. As a result, Farstad 

developed an enhanced SD model with only Running and Down compartments, applied to the same five CIs as 

Canzani’s (2016) model. Farstad also incorporated three different matrices from Laugé (2014) research for 

disruption durations of less than two hours, less than 24 hours, and more than one week in CI according to the 
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scenario to be tested. 

A new SD model that enhanced Farstad and Canzani’s was introduced by Abdelgawad et al. (2019), as they 

extended the CIs understudy from five to all eleven CIs studied by Laugé (2014) and Laugé et al. (2015). 

Additionally, instead of using one table or more extracted from Laugé (2014) as a matrix of constants controlling 

the CIs’ breakdown rates as done by Farstad and Canzani, they chronologically sorted and joined all the 11×11 

tables created by Laugé (“less than two hours”, “less than six hours”, “less than 12 hours”, “less than 24 hours”, 

“more than 24 hours” and “more than one week”) into a cube. This cube was split into 110 different time series, 

each portraying the failure effect of one particular CI on another particular CI over disruption time. Accordingly, 

a dynamic failure fraction based on these time series was used instead of a constant value to control the CI 

breakdown rate throughout a disruption scenario simulation.  

This new SD model was used to test and discuss the cascading effects of a cyber-attack and how an intelligent 

attacker could exploit existing knowledge on cascading impacts to plan for perfidiously timed cyber-attacks 

requiring low resources that would achieve a significant disruption of CIs. The model allowed analysing cascading 

effects impacts and checking the robustness of a CI towards a series of disruptions, whether arising by chance or 

planned by an attacker if they timed and targeted at the weakest links dynamically, as the cascading effects 

propagate. Abdelgawad and Gonzalez (2019) added a new structure to the same SD model of Abdelgawad et al. 

(2019) to calculate the aggregate effects of cascading failures in CIs and compare them with the direct cascading 

failures estimated by experts. The research found that the aggregate effects become more significant than the 

direct the longer the duration of the disruption becomes. The paper concluded that such an SD model could 

improve desktop-based exercises as it highlights effects beyond experts’ judgmental assessments. 

Ryu and Park (2018) presented another SD model to describe the causal relationships between Water and Energy 

CIs. Their model aimed at suggesting management policies to increase the resilience of the water supply system. 

The model was simulated under disruptive scenarios to analyse systemic behaviour. The simulation result showed 

that enhancing the resilience of the water supply system improved the recovery capacity of the water supply 

system and the energy supply system. 

Trucco et al. (2018) presented a multilevel simulation modelling approach that combined Discrete Event 

Simulation and SD to evaluate the economic impact of CI disruptions on key resource supply chains such as food 

and pharmaceuticals. These supply chains rely heavily on CIs, making them vulnerable to any disruptions in CIs. 

The approach was demonstrated through a case study that analysed the vulnerability and resilience of the Italian 

fast-moving consumer goods supply chain against disruptions in its underlying CIs. The simulation results 

provided valuable insights into the interdependence between key resource supply chains and CIs. They also could 

help supply chain managers identify and prioritise resilience strategies. 

Instead of focusing on sudden failures or attacks on CIs like the previously reviewed literature, Frydenlund et al. 

(2016) used an SD approach to model degradation and infrastructure investment in three CIs (Transport, Public 

utilities, and Communications). The model combined traditional physical and cyber approaches to model CIs with 

a human factors component to quantify the degradation of interdependent CIs. The model showed some of the 

dangerous feedback cycles of degradation between CIs when investment and social resiliency are insufficient. 

This paper aimed to develop a method to incorporate social systems into interdependent infrastructure research 

that can be built into a tool to aid policymakers in understanding and addressing investment linkages between CIs. 

All surveyed SD models were small models. There are veracious benefits to using smaller models instead of 

focusing on detailed models (Ghaffarzadegan et al. 2011). They are easy to comprehend, focus on critical 

elements, and only ask for a few characteristics with direct relationships between them. The evaluation of these 

linkages is indeed based on professional judgment. In general, SD offers an effective method for simulating 

cascading effects and investigating tactics to improve the resilience of complex systems. It enables researchers to 

model the behaviour of complex systems under various circumstances and capture the interdependencies between 

different system components. This makes it a perfect method for comprehending the possibility of cascading 

consequences and for investigating mitigation techniques. 

SYSTEM DYNAMICS MODEL 

Data collection and processing 

The present paper introduces an SD model that addresses critical issues in the model developed by Abdelgawad 

et al. (2019). Using the expert estimates tables published in Laugé’s doctoral thesis (2014) or Laugé et al.’s paper 

(2015) is problematic for two reasons. Firstly, Laugé used averages with Likert scale data. Although widely used 

with the Likert scale, the average is unsuitable for ordinal data. The median in such a case is an appropriate 

measure of central tendency (Law and Pascoe 2012). Secondly, based on the questionnaire administered by Laugé 
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(see Figure 1), its scale, and how to answer it explanation (see Figure 2), it is clear that it describes the status of 

the non-working operations CI level more than the breakdown rate as used by Canzani (2016), Farstad (2018), 

and Abdelgawad et al. (2019). 

 

Figure 1. Extracted from page 166 (Question 26 of Ana Laugé’s questionnaire to CI representatives/managers) © 

Laugé 

 

Figure 2. Extracted from page 165 (How to answer explanation of question 26 of Ana Laugé’s questionnaire to CI 

representatives/managers) © Laugé 
 

Furthermore, Abdelgawad et al. (2019) followed Canzani (2016) and Farstad (2018) in assuming the same 

arbitrary constant repair and restoration time for all CIs. However, this assumption poses another problem as the 

repair and restoration times vary among different CIs, as could be noted from Laugé (2014); The recovery time 

was obtained through her questionnaire to the CIs representatives and managers. On page 51, Laugé (2014) stated 

that “[f]urthermore, experts were asked to answer about their recovery time when the affected CI is repaired, in 

order to know if their recovery is immediate or needs some time”, and also “[f]igure 3.3 2nd section of the 

questionnaire: CI dependencies evidences” shows this part of the questionnaire (see Figure 3). Laugé (2014) did 

not include any values for the CIs’ repair and restoration times in her published data. 

It was possible to contact Laugé and obtain the original data files, which, in addition to the disaggregate Likert 

results, contain the unpublished answers to the repair and restoration time question she collected during her 

doctoral research. We have reprocessed the original data and extracted two new datasets as follows: 

1) The Likert Scale Data 

Instead of the average values Laugé calculated, have calculated the median of the data collected on the Likert 

scale for the severity of cascading effects on one CI caused by a disruption of “less than two hours”, “less than 
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six hours”, “less than 12 hours”, “less than 24 hours”, “more than 24 hours” and “more than one week” in another 

CI. We came up with six 11×11 tables corresponding to the six disruption periods. Similar to (2019), we converted 

these successive matrices into 110 time series (e.g. Figure 4 to the left). As mentioned earlier, each time series 

portrays the behaviour of one CI out-of-service operations level after and during a disruption in another CI. 

Accordingly, we added one value to each time series equal to Zero at time Zero to express that the CI was working 

at its capacity immediately before the disruption. We have also repeated the last value of each time series and put 

it at a time equal to the final time of our new model to express that the behaviour stays at this value as indicated 

by the questionnaire (“more than a week”, see Figure 1). Each new time series was multiplied by 20, so five means 

total out-of-service or 100% (“very high effect: my CI cannot continue operating”, see Figure 2). 

 

Figure 3. Extracted “Figure 3.3 2nd section of the questionnaire: CI dependencies evidences” © Laugé 
 

 

Figure 4: Example of the median time series portraying the effect of Energy CI failure on Chemical and Nuclear 

Industry CI (median time series to the left/generated CI out-of-service operations level) 
 

2) The Repair and Restore Time 

The time durations options collected by Laugé, as shown in Figure 3, are “Less than 1h”, “Less than 6h”, “More 

than 6h”, and “Others (please specify)”. To calculate an average CI repair and restore time for each CI, we had to 

find some way to convert these periods into time points. It was intuitive to convert all answers of “Less than 1h” 

duration to half an hour, the average between zero and one hour. We used the same way for “Less than 6h”, which 

is between one hour and six hours. However, for “More than 6h” and “Others”, we arbitrarily put it as the average 

between six hours and the highest answer collected for this specific CI. Then we averaged the individual 

respondent’s answers to create one value of repair and restore time for each CI. This way, we could construct a 

zero-diagonal 11×11 matrix with elements expressing the CI repair and restore time after a disruption caused by 

another CI. The matrix was saved in an Excel file and subsequently loaded into the model by the SD simulation 

software Vensim DSS 7.2 (Ventana Systems, Inc. 2017) during runtime. 

Model structure 

The stock-and-flow diagram of our model is shown in Figure 5. The model has two stocks/levels for each CI. “CIi 

In-Service Operations” and “CIi Out-of-Service Operations”. We have used the small letter “i” beside the CI in 

the names of these two levels and other model variables to denote and distinguish the affected variables “CIi” 

from the affecting variables “CIj”. The two levels, “CIi In-Service Operations” and “CIi Out-of-Service 

Operations”, hold 100% and 0% at the simulation’s initial time, denoting CI’s normal functioning. In 

mathematical form, equations 1 and 2, respectively. 
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Figure 5: Model structure 
 

𝐶𝐼𝑆𝑂𝑖 = 100 + ∫ (𝐶𝑅𝑆𝑖 − 𝐶𝐹𝑅𝑖) 𝑑𝑡
𝑇

𝑇0

(1) 

Where: 

CISOi: CIi In-Service Operations 

CRSi: CIi Return to Service Rate 

CFRi: CIi Failure Rate 

 

𝐶𝑂𝑆𝑖 = 0 + ∫ (𝐶𝐹𝑅𝑖 −  𝐶𝑅𝑆𝑖) 𝑑𝑡
𝑡

𝑡0

(2) 

Where: 

COSi: CIi Out-of-Service Operations 

CRSi: CIi Return to Service Rate 

CFRi: CIi Failure Rate 

 

Although not orthodox, we would like to start with the flow/rate “CIi Return to Service Rate” because its related 

SD structure is more straightforward than the structure related to the “CIi Failure Rate”. Equation 6 

mathematically expresses the “CIi Return to Service Rate” shown in Figure 5. This is a regular “decay” molecule 

equation (Hines 2005), in which the level value is divided by the time to drain until it is totally depleted. A 

Piecewise function is used to prevent division by zero. As mentioned in the last subsection, the “CIi Repair and 

Restore Time after CIj Failure” is a matrix of parameters expressing the CI repair and restore time after a 

disruption caused by another CI, as mentioned in the last subsection. This matrix is loaded to the model by Vensim 

DSS via an Excel file during runtime. 

𝐶𝑅𝑆𝑖 = {

𝐶𝑂𝑆𝑖

max
𝑗

𝐶𝑅𝑖,𝑗
max

𝑗
𝐶𝑅𝑖,𝑗 > 0

0 otherwise

(3) 
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Where: 

CRSi: CIi Return to Service Rate 

COSi: CIi Out-of-Service Operations 

CRi,j: CIi Repair and Restore Time after CIj Failure 

|𝑖|: Cardinality of vector 𝑖, i.e. number of its elements which is 11 for our model case 

 

On the other side, the “CIi Failure Rate” (see equations 4 and 5) is the maximum value of the matrix “CIi Failure 

due to CIj Failure” if and only if any of the “CIi Failure Timeline due to CIj Disruption” disruption timelines have 

value. The disruption timeline concept was introduced by Abdelgawad et al. in (2019) (See Figure 6). The idea is 

to start a new timeline for each CI disruption; this timeline differs from the simulation timeline and any other CI 

disruption timeline. In our model, we have chosen to model the timeline as a Vensim Macro so that it behaves as 

a function called DTIMELINE, as in equation 5. According to the median data extracted from Laugé (2014), there 

are cases where the disruption effect of a certain CIj does not immediately affect another CIi. The “CIi Failure 

Starting Time due to CIj Failure” is a matrix of parameters with elements depicting the time CIi fails after CIj 

disruption starts. This matrix is loaded to the model by Vensim DSS via an Excel file during runtime. 

𝐶𝐹𝑅𝑖 = {
max

𝑗
𝐶𝐹𝑖,𝑗 ∑ 𝐶𝐹𝑇𝑖,𝑗

𝑗
> 0

0 otherwise

(4) 

Where: 

CFRi: CIi Failure Rate 

CFi,j: CIi Failure Rate due to CIj Failure 

CFTi,j: CIi Failure Timeline due to CIj Disruption 

 

Figure 6: Extracted “Original and Generated Simulation Timelines (Disruption Starts at Hour 48)” © Abdelgawad et 

al. 
 

𝐶𝐹𝑇𝑖,𝑗 = DTIMELINE(𝐴𝐼𝐶𝐹𝑖, 𝐶𝐹𝑆𝑖,𝑗) (5) 

Where: 

CFTi,j: CIi Failure Timeline due to CIj Disruption 

AICFi: CIj Disruptions 

CFSi,j: CIi Failure Starting Time due to CIj Failure  

DTIMELINE: Disruption Timeline Macro 

 

Equations 6, 7, and 8 together express a “level protected by level” molecule equation, in which “the actual outflow 

is the product of the desired draining and a function that shuts off the outflow as the level approaches zero” (Hines 

2005). The elements of the matrix “CIi Failure due to CIj Failure” are the valves that control the “CIi Failure 

Rate”, assuming that the “CIi In-Service Operations” level is not fully depleted. 

The “CIi Failure Fraction due to CIj Failure” and “CIi In-Service Operations Max Draining due to CIj Failure” 

are two parameter matrices loaded to the model by Vensim DSS via the same Excel file mentioned earlier during 
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runtime. The values of “CIi Failure Fraction due to CIj Failure” were produced through an optimisation process, 

as explained in the following subsection, while the values of “CIi In-Service Operations Max Draining due to CIj 

Failure” are the maximum value of the median time series for the pair CIi and CIj we have created in the last 

subsection. 

𝐶𝐹𝑖,𝑗 = 𝐶𝐼𝑆𝑂𝑖 ⋅ 𝐶𝐹𝐹𝑖,𝑗 ⋅ 𝐸𝐿𝑂𝐷𝑖,𝑗 (6) 

Where: 

CFi,j: CIi Failure due to CIj Failure 

CISOi: CIi In-Service Operations 

CFFi,j: CIi Failure Fraction due to CIj Failure 

ELODi,j: Effect of level on draining 

 

𝐸𝐿𝑂𝐷𝑖,𝑗 = ELODL(𝑅𝐶𝐼𝑀𝐷𝑖,𝑗) (7) 

Where: 

ELODLi,j: Effect of Level on Draining Lookup 

 

𝑅𝐶𝐼𝑀𝐷𝑖,𝑗 =
(𝐶𝐼𝑆𝑂𝑖 −  𝐶𝐼𝑀𝐷𝑖,𝑗)

100
(8) 

Where: 

RCIMDi,j: Relative CIi In-Service Operations Max Draining Due to CIj Failure 

CISOi: CIi In-Service Operations 

CIMDi,j: CIi In-Service Operations Max Draining due to CIj Failure 

 

Two types of CI disruptions can occur during the simulation of this model. We have coined them as “Induced” 

and “Autonomous”. “Induced” disruption is generated as a pulse signal or a train of pulses to simulate a 

disruption/attack or a series of disruptions/attacks in a particular CI. “Autonomous” disruption, on the other hand, 

simulates the failure of a particular CI due to the cascading effect of a failure in another CI. Both types affect “CIi 

Failure Rate” through “CIj disruptions”. “CIj disruptions” is set to the greater of “Induced” or “Autonomous”; it 

could also be set to their sum as far as this sum does not exceed one. (see Equation 9). 

Figure 7 shows how both CI disruption types are generated in the model. Equation 10 shows that “Autonomous” 

disruption happens if the value of each of the “CIi In-Service Operations” levels does not exceed its “CIi Minimum 

Demand”, while Equation 11 expresses the “Induced” disruption as a pulse or train of pulses, as mentioned earlier. 

𝐴𝐼𝐶𝐹𝑖 = {
𝐴𝐶𝐹𝑖 𝐴𝐶𝐹𝑖 > 𝐶𝐼𝐷𝑗

𝐶𝐼𝐷𝑗 otherwise
(9) 

Where: 

AICFi: CIj disruptions 

ACFi: CIj Autonomous Disruption 

CIDj: CIj Induced Disruption 

 

𝐴𝐶𝐹𝑖 = {

𝐶𝐼𝑆𝑂𝑖

𝐶𝑀𝐷𝑖
𝐶𝐼𝑆𝑂𝑖 < 𝐶𝑀𝐷𝑖

0 otherwise

(10) 

Where: 

ACFi: CIj Autonomous Disruption 

CISOi: CIi In-Service Operations 

CMDi: CIi Minimum Demand 
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𝐶𝐼𝐷𝑗 = {

𝐶𝐼𝑀𝑗 𝐶𝐼𝑆𝑗+(𝑛 − 1) ⋅ (𝐶𝐼𝐷𝐷𝑗 + 𝑇𝐶𝐼𝐷𝑗) ≤ 𝑡 < 𝐶𝐼𝑆𝑗+(𝑛 − 1) ⋅ 𝐶𝐼𝐷𝐷𝑗 + 𝑇𝐶𝐼𝐷𝑗

0 otherwise
0 𝑡 ≤ 𝐶𝐼𝐹𝑗

(11) 

Where: 𝑛 = ⌊
𝑡−𝐶𝐼𝑆𝑗

𝐶𝐼𝐷𝐷𝑗+𝑇𝐶𝐼𝐷𝑗
⌋ + 1, and  

CIDj: CIj Induced Disruption 

CIMj: CIj Induced Disruption Magnitude 

CISj: CIj Induced Disruption Starting Time 

TCIDj: Time between CIj Induced Disruption Durations 

CIDDj: CIj Induced Disruption Duration 

CIFj: CIj Induced Disruption Durations Final Time 

⌊
𝑡−𝐶𝐼𝑆𝑗

𝐶𝐼𝐷𝐷𝑗+𝑇𝐶𝐼𝐷𝑗
⌋: Floor of the value 

𝑡−𝐶𝐼𝑆𝑗

𝐶𝐼𝐷𝐷𝑗+𝑇𝐶𝐼𝐷𝑗
 

 

 

Figure 7: CI Disruption 

Parameters estimation through an optimisation model 

As mentioned in the previous subsection, “CIi Failure Starting Time due to CIj Failure”, “CIi In-Service 

Operations Max Draining due to CIj Failure”, and “CIi Failure Fraction due to CIj Failure” are three parameters’ 

matrices loaded to the model by Vensim DSS through an Excel file during runtime. It was also mentioned that the 

values of “CIi Failure Starting Time due to CIj Failure” and “CIi In-Service Operations Max Draining due to CIj 

Failure” were calculated based on Laugé’s data while “CIi Failure Fraction due to CIj Failure” had been produced 

through an optimisation process. 

 

Figure 8: An example of the optimisation model structure (E: CIEneregy and O: CIFood) 
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Figure 9: Part of the results of the optimisation process (Out-of-service of all CIs due to Energy CI failure) 
 

In order to calculate the “CIi Failure Fraction due to CIj Failure”, a simplified version of the CI Failure Rate with 

both “CI In-Service Operations” and “CI Out-of-Service Operations” levels for each pair of CIs was extracted 

from our model. Figure 8 illustrates this structure for disruption of Energy CI on Food CI. Another 109 comparable 

structures were constructed in one Vensim model to account for every possible pair of CIs in the original model. 

Building such a model is a tedious and error-prone process; therefore, we used a Python script to produce it. 

Additionally, since this new model was built for optimisation using Vensim DSS optimisation functionality, the 

Python script produced all other files required for the optimisation process (the payoff definition file, the 

optimisation control file, and the reference mode dataset). 

The optimisation process was done using Powell optimiser and involved adjusting the “CIi Failure Fraction due 

to CIj Failure” (CFF EO in Figure 8) to match the simulation results of “CI Out-of-Service Operations” (COS EO 

in Figure 8) with its respective median data calculated based on Laugé's data. The optimisation was constrained 

by the values of “CIi Failure Starting Time due to CIj Failure” and “CIi In-Service Operations Max Draining due 

to CIj Failure” (CFS EO and CIMD EO in Figure 8, respectively). Figure 9 displays a portion of the optimisation 

process results, specifically the “Out-of-service operations” of all CIs caused by the failure of the Energy CI. 

RESULTS 

Results of the simulation model 

Figure 10 illustrates the behaviour of our model in three distinct simulation scenarios. The sub-charts are arranged 

in three columns (1 to 3) corresponding to scenarios 1 to 3, respectively. Rows depict the behaviour over time of 

the following variables: CIj Induced Disruption, CIj Autonomous Disruption, CIi In-Service Operations at 90% 
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CIj Minimum Demand, and CIi In-Service Operations at 100% CIj Minimum Demand. Table 1 describes the 

“Induced” disruption (“CIEnergy Induced Disruption”) sent to the model regarding disruption starting time, 

duration, and magnitude in the three simulation scenarios. 

 

Figure 10: Model Behaviour; Sub-charts are arranged in three columns (1 to 3) corresponding to scenarios 1 to 3, 

respectively. Rows represent the behaviour over time of the following: CIj Induced Disruption, CIj Autonomous 

Disruption, CIi In-Service Operations at 90% CIj Minimum Demand, and CIi In-Service Operations at 100% CIj 

Minimum Demand 

 

Table 1. Descriptions of simulation scenarios 

 CIEnergy Induced 

Disruption 

Starting Time 

CIEnergy Induced 

Disruption 

Duration 

CIEnergy Induced 

Disruption 

Magnitude 

Scenario 1 48 h 12 h 1 

Scenario 2 48 h 60 h 1 

Scenario 3 48 h 72 h 1 
 

In all three scenarios, the Energy CI experiences an “Induced” disruption/attack of the highest magnitude (severity 

level = 1) at hour 48 of the simulation. In the first scenario, the disruption period lasts for 12 hours. When CIj 

Minimum Demand is 90%, the CIi In-Service Operations of all CIs drop to varying degrees and recover at different 

times. By the end of the simulation, the CIi In-Service Operations for all CIs stabilise again. When CIj Minimum 

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

 

  

  

  

  

  

  

  

  

  

   

  
 

            

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

                

             

 

  

  

  

  

  

  

  

  

  

   

  
 

            

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

 

  

  

  

  

  

  

  

  

  

   

  
 

            

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

                

             

 

  

  

  

  

  

  

  

  

  

   

  
 

            

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

 

  

  

  

  

  

  

  

  

  

   

  
 

            

 

   

   

   

   

 

  
  

  
  
 
 
  
  
 

            

                

             

 

  

  

  

  

  

  

  

  

  

   

  
 

            



 

Abdelgawad An Updated System Dynamics Model for Analysing … 
 

WiPe Paper – Track 07 Analytical Modeling and Simulation 

Proceedings of the 20th ISCRAM Conference – Omaha, Nebraska, USA May 2023 

J. Radianti, I. Dokas, N. LaLone, D. Khazanchi, eds. 

Demand is 100%, the CIi In-Service Operations of all CIs recover considerably but never fully stabilise, as they 

oscillate between 80% and 100%. 

In the second scenario, despite the extended disruption period (two days and a half), the behaviour pattern is 

similar to that of the first scenario but with more extended recovery periods. In the third scenario, when the 

“Induced” disruption duration reaches three days, the “CIi In-Service Operations” of all CIs never recover over 

the simulation period, neither at 90% nor 100% of “CIj Minimum Demand”. 

This is still work-in-progress research. However, the results’ severity has significant implications for 

policymakers and CI managers. Policymakers and CI managers should take note of the potential impact of 

“Induced” disruptions/attacks on CIs and their cascading effects on the “In-Service Operations” of all CIs. They 

must consider implementing appropriate measures to protect against such attacks, such as maintaining minimum 

demand levels and developing more robust systems for detecting and responding to disruptions/attacks within 

each CI. They should consider investing in alternative sources less vulnerable to such attacks and developing 

contingency plans to mitigate the effects of any potential disruptions/attacks. 

Validation and testing 

At this research stage, our SD model has undergone only the basic validation tests Sterman (2000) outlined. These 

tests include the Integration Error test, in which we conducted simulations using different integration time steps 

and numerical integration methods, and the model yielded the expected results. Additionally, we performed the 

Dimensional Consistency test by assigning units of measurement to all model variables and verifying their 

consistency using the Vensim DSS unit testing functionality. Finally, we conducted the Extreme Conditions test 

by subjecting the model inputs to extreme values and ensuring that the resulting model simulations met our 

expectations. 

Limitations and future research directions 

Tests like sensitivity analysis, boundary adequacy, and structure assessment are still required (Sterman 2000). In 

addition, our testing was limited to basic scenarios, as presented in the previous sections; therefore, conducting 

tests using more complex scenarios is imperative. It is also crucial to examine scenarios proposed in earlier studies 

by Abdelgawad et al. (2019), Abdelgawad and Gonzalez (2019), Canzani (2016), and Farstad (2018) and compare 

the results. However, considering the absence of a reference model, such scenarios' outcomes will necessitate field 

experts’ input. 

CONCLUSION 

The cascading effects of Critical Infrastructure (CI) failures are an increasingly critical issue in our interconnected 

world. These failures can have severe consequences on other CIs and the overall economy. To study the cascading 

effects of such failures, several System Dynamics (SD) models have been developed, some building on the work 

of previous models and attempting to improve on their limitations. 

The data collection effort by Ana Laugé (2014) was an essential step in understanding the interconnectedness of 

CI systems. However, her use of averages on Likert scale data is not the best choice. A more suitable measure of 

“central tendency”, such as the median, should be used. Furthermore, the scale used in the questionnaire is more 

relevant to the status of the non-working operations level than the breakdown rate as done in the previous models.  

The SD model built by Elisa Canzani (2016), based on Laugé’s data, was criticised for using an epidemic diffusion 

model, which may not accurately reflect CI operations (Farstad 2018). Abdelgawad et al. (2019) presented a new 

model that addressed that and extended the analysis to include all 11 surveyed CIs. The model of Abdelgawad et 

al. represents a significant improvement over the previous models. Their use of a time series dataset that shows 

the failure effect of any of the eleven CIs on any other CIs provides a more accurate representation of the 

interconnectedness of CI systems. However, the arbitrary assumption of a constant average repair and restoration 

time for all CIs after failure is inaccurate. 

The SD model developed in this paper builds on the work of Abdelgawad et al. (2019) and introduces several 

improvements. The most significant improvement is using an updated dataset that corrects some of the flaws in 

previous data processing techniques. Additionally, our model’s structure and data processing techniques are 

described in detail, allowing for easier replication and validation. 

Although our model has passed basic SD model validation criteria, more validation testing and scenario 

exploration are needed. Future research should focus on refining the dataset, validating the model structure and 

behaviour with field experts, and exploring more complex and realistic scenarios. 
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The SD model presented in this paper, the modelling process, the data collection tools created earlier by Laugé, 

and our data processing methodology compile a framework for modelling CIs failure cascading effects. This 

approach offers a structured method for understanding the complex interdependencies and feedback loops that 

can lead to the spread of failures across interconnected CIs. Using this SD model, analysts can develop insights 

into the potential impacts of CI failures, which can inform decision-making and risk-management efforts. 

Therefore, using the SD model and its associated modelling process can enhance our ability to anticipate, prepare 

for, and respond to cascading failures in critical CIs. 

In conclusion, the study of CI interdependencies and the cascading effects of their failures is a critical issue that 

requires continuous research and modelling efforts. The SD model presented in this paper represents another step 

in understanding these complex systems. However, much work must be done to ensure we can effectively prevent 

and manage CI failures and their cascading effects. 
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