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ABSTRACT 

In this contribution, we introduce a prototype of a decision support tool for cost-optimal response in security 

management.  The threat situation of a closed infrastructure, exposed to multiple threats, and the corresponding 

response actions are modeled by a continuous-time Markov decision process (CMDP).  Since the CMDP cannot 

be solved exactly for large infrastructures, the response actions are determined from a heuristic, based on an 

index rule.  The decision support tool’s user interface displays the infrastructure’s current threat state and 

proposes the heuristic response actions to the decision maker.  In this way, global situation awareness can be 

enhanced and the decision maker is able to initiate an almost cost-optimal response action in short time. 
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INTRODUCTION 

Critical infrastructures are the backbone of every industrialized society and thus demand extraordinary 

protection.  Multiple threats such as accidents, natural hazards, crime, or terrorism menace these infrastructures.  

Avoiding disastrous impact from these threats requires early threat detection and correct assessment of the 

current threat situation in order to initiate the best response. 

First choice to achieve these aims is surveillance of an infrastructure.  This can be best accomplished by 

combining the complementary capabilities of human beings and state-of-the-art sensor and computer technology 

to form man-machine systems.  Figure 1 illustrates such a surveillance system.   

 

Figure 1.  Man-Machine System to Accomplish a Surveillance Task 

During surveillance, sensor equipment and security personnel acquire information about the infrastructure’s 

threat state.  From this information, a decision support system generates a description of the current threat 

situation that improves the decision maker’s situation awareness.  Additionally, the system provides response 
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guidelines.  Supported in this way, the decision maker selects and initiates the currently most appropriate 

response action.  The key point of the framework is how to tailor the decision support to provide maximum 

benefit for the decision maker, i.e. how to get the best situation description from the acquired information and 

how to get the best response action for a particular situation. 

Here, we focus on a surveillance task serving to protect a closed traffic infrastructure like a train station, an 

airport or a logistics center.  In these domains, state-of-the-art surveillance is implemented primarily through 

security personnel, monitoring cameras, and alarm-triggering sensors.  State-of-the-art decision support consists 

of operation guidelines, which define response rules for particular threat situations, usually based on extensive 

risk assessment and experience gathered through previous threat events.  This might be sufficient and efficient 

in a single-threat situation where all response means can be focussed on one response task.  In case of a 

multiple-threat situation with numerous threat events, all of them requiring prompt response, refined decision 

support considering the global threat situation might be necessary.  Providing global situation awareness should 

support the decision maker to choose the globally best response action. 

On the other hand, a comprehensive surveillance of a large infrastructure produces an abundance of situation 

reports.  Particularly in a multiple-threat situation, this would result in information overload for the decision 

maker.  In consequence, it is necessary to choose a representation of the situation description that draws the 

decision maker’s attention to the most important site. 

APPROACH 

The first section of this chapter outlines how the previously defined aims, mainly a global view on the threat 

situation providing globally optimal response actions, can be accomplished by mathematical modeling of an 

infrastructure’s global threat situation using a continuous-time Markov decision process (CMDP).  The second 

section shows how to use the CMDP-model as a base for decision support. A decision support tool prototype is 

introduced, providing a representation of the current threat situation and the corresponding best response 

actions. The interface of the tool strives to provide global situation awareness for the decision maker, while 

avoiding information overload at the same time. 

Providing a Global View and Globally Optimal Response with a CMDP-Model Defining a Threat Scenario 

Modeling the Global Threat Scenario 

In general, a threat scenario can be described by a controlled stochastic process.  The infrastructure’s threat 

situation, i.e. its current threat state, changes according to random threat events and is influenced by the chosen 

response actions.  To model the threat scenario globally, we use the rich mathematical theory of continuous-time 

Markov decision processes (CMDP) (Puterman, 2005).  A CMDP consists of a set of parameters describing the 

process states, its stochastic dynamics, available actions and corresponding costs.  In our threat scenario, process 

states are the possible threat states of the infrastructure.  They are defined by parameters describing the overall 

structure of the infrastructure (sectors and their dependencies) and a finite number of threat levels:  A threat 

state is given by the set of threat levels of all sectors. The threat levels range from “no threat” to “immediate 

threat” and result from the occurrence rates of a finite number of threat events.  Besides threat events, the 

stochastic dynamics of the process are modeled by parameters defining a set of response actions and available 

resources (e. g., a finite number of sensors and security personnel).  Finally, parameters describe the 

corresponding costs for threat events and response actions respectively. 

Global situation awareness is primarily provided by the infrastructure’s threat state, which aggregates all 

sectors’ threat levels.  Threat state changes are triggered by events from outside (threat events and response 

actions).  In addition, we model that changes are also influenced by the sectors’ dependencies.  Thus, the impact 

of an event is not only in the sector, in which it occurs, but also in dependent sectors.  Considering the impact of 

a threat in such an extended way, the model definition facilitates early detection of threat to sectors that have not 

been threatened directly.  For a detailed description of all parameters and their relations see (Bauer, Hild and 

Ott, 2009). 

Determination of the Global Response Policy 

Based on the model parameters, a solution of the CMDP is calculated by linear programming.  The result is an 

optimal response policy that minimizes the expected total discounted costs of the CMDP; for formulas see 
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(Bauer et al., 2009).  Since the definition of the threat scenario in the CMDP is global, the response policy is 

global as well.  The policy contains the cost-optimal response action for every defined threat state of the 

infrastructure.  It represents the recommendation of the decision support tool. 

 

Figure 2.  Decision Support in a Surveillance Framework Based on a CMDP 

The Decision Support Tool Prototype 

Applying the CMDP-Model in Operation 

Figure 2 shows how a CMDP-model can be employed to provide decision support in a surveillance framework, 

using an example for a regional airport. 

Using the CMDP-model as base for a decision support tool in operation of surveillance of a real infrastructure, 

parameter modelling and policy computation have to be done during a setup phase.  At first, the threat scenario 

has to be described by parameter data as required by the CMDP model definition (see above) (1). The 

parameters are similar to those which would have been collected for a state-of-the-art risk analysis of the 

infrastructure to formulate operation guidelines for security personnel.  For this work, obtaining high-quality 

parameter data for the model parameters has been a challenging task.  As the data in question is security-

relevant, operators of infrastructures are reluctant in providing it.  Even though our data has been reviewed by 

security experts it remains an educated guess at present.  Based on the parameter data (2), a solution of the 

CMDP is calculated by linear programming, resulting in an optimal response policy (3). 

In operation, the decision support tool links currently acquired information about the infrastructure’s threat 

situation, the predefined model parameters and pre-calculated response policy.  The result is a risk map (4) of 

the infrastructure plus a graphical representation of the recommended response action (5). 

Heuristic Policy for Large Infrastructures  

Simple access to the policy as described above is possible if the computation of the optimal policy results in a 

two-column table that lists for every threat state the corresponding optimal action.  An example introducing an 

exact computation of the policy can be found in (Bauer et al., 2009).  Considering a real-sized infrastructure 

consisting of lots of sectors, the number of threat states grows exponentially with the number of sectors.  Due to 

this curse of dimensionality, it is impossible to solve the minimization problem defined by the CMDP for large 

infrastructures.  Therefore, one has to find a way to solve it as good as possible, such that the resources for 

computation suffice to obtain an approximation of the optimal policy in acceptable time. 
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In this section, we propose a heuristic which is based upon an index rule.  Such heuristics compute indices for 

projects the decision maker is working on and choose to work on those projects with the highest indices.  They 

are, for instance, considered in approximately solving so-called restless bandit problems (cf. (Whittle, 1988)).  

Earlier, (Gittins, 1979) has shown that a policy based upon an index is indeed optimal if the problem is a so-

called multi-armed bandit, which is a special case of a restless bandit. 

For our surveillance problem, assume that there are only a limited number r  of security personnel available to 

the decision maker.  To obtain the heuristic, all sub-infrastructures of size rm   are considered as independent 

projects that can be worked on.  Based on a threat state of the original infrastructure, we define an index for 

every sub-infrastructure which depends only on the corresponding state of the sub-infrastructure.  Then the 

heuristic action is defined as the optimal action of the sub-infrastructure with maximal index.  The size m  of the 

considered sub-infrastructures should be chosen large enough to incorporate the essential dependencies of the 

original infrastructure.  On the other hand, m  should be sufficiently small as well, such that the optimal 

response policies of the sub-infrastructures are still computable.  For large r , where there is no rm   for which 

the problems corresponding to the sub-infrastructures are computable, other heuristics have to be used. 

To get an idea of the quality of the heuristics in comparison to an optimal policy we consider the following 

numerical example.  The infrastructure consists of four sectors and we define five threat levels for each sector..  

The restrictions are 2,1r , i.e. the staff consists of one or two persons, respectively.  In these cases, the 

infrastructures are not too large and exact solutions for the problems are available.  Table 1 shows the minimal, 

average and maximal relative errors of the heuristic in comparison to the optimal costs.  As one would expect, 

the quality of the heuristic increases with m  for fixed r .  On the other hand, the error seems to be small enough 

to use the heuristic policy as base for decision support. 

r  m  Minimal relative error  Average relative error Maximal relative error 

1 1 5.01 % 5.49 %
 

7.13 % 

1 2 0.25 % 0.34 % 0.73 % 

1 3 0.11 % 0.16 % 0.58 % 

2 2 1.72 % 2.00 % 3.30 % 

2 3 1.12 % 1.28 % 2.53 % 

Table 1.  Results of the Numerical Example 

The User Interface: Providing Situation Awareness 

Figure 3 shows a user interface of the decision support tool giving a picture of the global threat situation of a 

regional airport.  All sectors are depicted by idealized contour lines.  The fill colour of a sector changes 

according to the sector’s current threat state.  The threat coding is done by five different threat levels, from “no 

threat” (dark green) to “immediate threat” (dark red).  This mapping, commonly used for representation of 

warnings, ensures that the viewer’s attention is directed to the most threatened sectors.  

The optimal response action is directly represented in the risk map.  In this example, the resources are restricted 

to two parallel response measures, which are either inspection by security personnel or analysis by camera.  This 

corresponds to two elementary response actions in the model.  Clear symbols ask for the appropriate action.  To 

further enhance situation awareness, the interface also shows the sectors’ dependencies (arrows) as well as their 

values (in million €).  Thus, the decision maker is not only subject to the fixed policy recommendation, but they 

are supported in deciding differently, if necessary.  The representation aims to avoid information overload by 

the following means: 

 The representation abstracts from the single items of sensor information and integrates them to a single 

threat level.  This results in clear action recommendations for the decision maker. 

 Uncertainties, which are present in every information system, are not shown in the user interface as 

they are already considered by the threat event occurrence rates within the model definition. 

 The user interface provides only model information which is relevant to enhance situation awareness. 
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Figure 3.  User Interface of the Decision Support Tool Prototype 

CONCLUSION 

In this contribution, a proposal has been made to improve decision support in security management by providing 

a global view of and globally optimal response to an infrastructure’s threat situation.  The rich mathematical 

CMDP theory seems to provide a promising method to meet this challenge.  Our prototype generates a near-

optimal response policy with respect to our simplified threat scenario model.  The overall quality of the system 

will depend on the degree to which a real world threat scenario can be matched by the assumptions in the 

underlying model. 

FUTURE WORK 

In the near future, we will conduct an experimental evaluation of our prototype. Participants are security staff of 

a local company.  The parameter data modelling the company’s threat scenario has been revised by security 

experts.  The aim is to determine to which extent the use of the decision support tool enhances the choice of the 

response action in a simulated threat scenario.  As mentioned above, obtaining high-quality parameter data for 

the model parameters has been a challenging task.  Future projects will strive for partners able to share their 

knowledge as “real” input to our model. 
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