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ABSTRACT 

We present a methodology to construct optimal visibility graphs from vector and raster terrain data based on the 
integration of Geographic Information Systems, computational geometry, and integer linear programming.  In 
an emergency situation, the ability to observe an environment, completely or partially, is crucial when searching 
an area for survivors, missing persons, intruders or anomalies.  We first analyze inter-visibility using 
computational geometry and GIS functions.  Then, we optimize the visibility graphs by choosing vertices in a 
way to either maximize coverage with a given number of watchers or to minimize the number of watchers 
needed for full coverage. 
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INTRODUCTION 

In an emergency situation, the ability to observe completely or partially an environment is crucial when 
searching an area for survivors, missing persons or intruders.  In this paper we present a methodology to 
construct the smallest optimal visibility graphs

1 from vector and raster data based on the integration of 
Geographic Information System (GIS) tools, computational geometry, and integer linear programming.  
Geographic information systems have been widely used for emergency management (Emrich, Cutter and 
Weschler, 2011) and constitute a valuable tool for practitioners in the field especially with the advances in 
technology.  Furthermore, many applications require the computation of visibility graphs (De Floriani and 
Magillo, 2003). For instance, in a Search and Rescue context where we wish to plan optimal search plans for 
searchers looking for a mobile search object with uncertain detection (Morin, Lamontagne, Abi-Zeid, Lang, and 
Maupin, 2010; Morin, Papillon, Laviolette, Abi-Zeid, and Quimper, 2012), an adequate representation of the 
terrain is important.  This is also true in searches with certain (perfect) detection or visibility such as pursuit-
evasion problems (e.g., Pellier and Fiorino, 2005), art gallery related problems (De Berg, 2000) or security 
monitoring (Murray, Kim, Davis, Machiraju and Parent, 2007). 

                                                           
1 A visibility graph is made of two sets: a set of vertices and a set of edges.  Each edge is a pair of vertices that represents inter-visibility 
between the vertices.  When the vertices are geo-referenced, the visibility graph defines an inter-visibility relation between areas (points) of 
a map. 



Morin et al. Constructing near-optimal visibility graphs 

 

Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013 

T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller, eds. 

 453 

We apply our methodology to structured (i.e. built) environments, and unstructured environments such as 
outdoor forested areas.  We formulate our problem as follows: A group of watchers is needed to cover an 
environment either to secure a perimeter, or to search for missing persons.  In this context, the objectives we 
attain with our methodology are the following: 

1. Analyze inter-visibility using vector or raster data and construct visibility graphs;  

2. Find the smallest number of watchers necessary and their positions, whether they are 

human spotters, sensors or cameras to cover an area;  

3. Given a fixed number of watchers, position the watchers to maximize the visibility 

coverage of an environment. 

The solution to the optimization problem in step 2 and 3 is a visibility graph of the environment with the 
smallest number of nodes possible.  In order to attain our first objective, we developed two approaches for 
analyzing inter-visibility and constructing visibility graphs: For vector data, we rely on an algorithm from 
computational geometry (Latombe, 1990).  For raster data, we use functionalities from ESRI’s ArcGIS 9.2.  For 
our second and third objectives, we have formulated the optimization problems as integer linear programs (ILP), 
namely the set cover problem and the maximum coverage problem.  We solve these problems using CPLEX 
12.5 solver and the OPL modeling language2.  

Our methodology is illustrated using two environments: the Université Laval campus map (a structured 
environment), and the Montmorency forest map (an unstructured environment with an approximate area of 66 
km2).  The paper is structured as follows: The first section presents the data processing phase for both vector and 
raster data.  The second section presents the set cover problem and the maximum coverage problem.  The third 
section provides experimental results.   

THE DATA PROCESSING PHASE: COMPUTING A FULL VISIBILITY GRAPH 

In the case of vector data, the connected polygons from the triangular irregular network (TIN) representation are 
first grouped and simplified using ArcGIS 9.2 built-in functionalities to obtain a 2-D environment (Figure 1) 
whose vertices represent possible positions for watchers in a visibility graph.  The polygons represent obstacles 
to visibility between vertices.  Subsequently, a Visual Basic for Application (VBA) script that we developed 
converts the data to geometrical objects3, namely polygons, to be used by our C++ visibility graph computation 
code4 (Lamontagne L., Rouet F. H., Abi-Zeid I., 2008).  Finally, we apply a VBA script that we developed to 
draw the resulting visibility graph in the GIS (Figure 2).    

 

Figure 1.  The 2-D polygons of the 

Université Laval campus 

 

Figure 2.  Visibility graph obtained for vector 

data – Université Laval campus 

In the case of raster data, the approach we use to construct a visibility graph relies heavily on the Viewshed 

Analyst function in ArcGIS.  We begin by superimposing over the digital terrain elevation model a uniform grid 
of square cells (Figure 3).  Then, the point in the center of each cell is analyzed to determine its visible region 
based on line of sight visibility within a specified radius (Figure 4).  This analysis results in a full visibility 

                                                           
2 http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/ 

3 The data structures we developed use the Boost library (Dawes, Abraham and Rivera, 2009) and the geometrical objects found in the 
CGAL library (Fabri and Pion, 2009. 

4 The implemented C++ code uses the software library VisiLibity (Obermeyer and collaborators, 2008). VisiLibity is capable of computing 
the visibility graph in O(n3) using an algorithm based on (Latombe, 1990). 
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graph of the area of interest (Figure 5).  The visibility graphs obtained either from raster data or vector data are 
subsequently used in the optimization phase. 

  

 

Figure 3.  A grid of 50 by 50 m square 

cells over the Montmorency forest 

Figure 4.  Visible regions in blue from 

the circled point  

Figure 5.  A zoom on part of a visibility 

graph over the Montmorency forest  

THE OPTIMIZATION PHASE: OBTAINING OPTIMAL VISIBILITY GRAPHS 

Given a full visibility graph, the question that arises is what is the smallest number of watchers necessary in 
order to ensure full coverage of the nodes.  This can be formulated as a classical set cover problem (Goodchild 
and Lee, 1989) as shown in the ILP formulation on Figure 6.  Let n be the number of vertices in the graphs.  Let 
the presence of a watcher at vertex i be denoted by yi, which is 1 if there is a watcher at position vertex i of the 
visibility graph, and 0 otherwise.  We wish to minimize the number of watchers such that all the vertices are 
visible from at least one vertex.  Let xji be 1 if vertex j is visible from vertex i and 0 otherwise. 

Given a fixed number of watchers and a full visibility graph, another question that arises is what is the largest 
number of nodes that can be covered?  And where should the available watchers be located in order to maximize 
the number of visible vertices?  This can be formulated as a maximum coverage problem (Goodchild and Lee, 
1989) as shown in the ILP formulation of Figure 7.  Let n be the number of vertices in the graphs, and p the 
number of available watchers.  Let the presence of a watcher at vertex i be denoted by yi, which is 1 if there is a 
watcher at position vertex i of the visibility graph, and 0 otherwise.  Let zi be 1 if vertex i is not visible by any 
watcher (not covered).  We wish to minimize the number of uncovered vertices given a number of watchers p.  
Let xji be 1 if vertex j is visible from vertex i and 0 otherwise. 
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Figure 6. A set cover ILP formulation Figure 7. A maximum coverage ILP formulation 

EXPERIMENTATION AND RESULTS 

The goal of our experimentation is twofold: To illustrate the optimization phase of our methodology on 
structured and unstructured environments, and to evaluate the capacity of the presented ILP to produce the 
optimal visibility graphs within a limited solving time, and a limited maximal number of allowed watchers.  All 
experiments were run on an Intel i7 Q740 processor with 8GB of RAM.  The default CPLEX configuration is 
used for all experiments. 

The Université Laval campus visibility graph contains a total of 255 vertices.  We found, using the set cover 
OPL model, that the required number of watchers to cover the whole graph (smallest full coverage graph) is 16.  
CPLEX obtained the optimal solutions in less than 1 second.  It is worth noting that this problem has no feasible 
solution if we require that each vertex be covered by exactly one other vertex which means that there is some 
multiple coverage.  Multiple coverage implies redundancy which is a valuable property of solutions for 
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surveillance related problems such as in security monitoring (Murray, Kim, Davis, Machiraju and Parent, 2007), 
especially in emergency situations when new obstacles to visibility may emerge, such as following an 
earthquake for example.  Figure 8 presents the achieved coverage on the Université Laval campus environment 
with a number of watchers varying from 1 to 16.   

 

Figure 8.  The best achieved maximum 

coverage for the Université Laval 

graph versus the number of watchers 

 

Figure 9.  The smallest number of watchers for a set cover on the Montmorency 

forest (left) and its duality gap (right) versus the solving time in seconds 

The visibility graph of our unstructured environment involves a total of 6025 vertices.  The resulting visibility 
graph, the maximum coverage graph, is dense even though we allowed a maximal inter-visibility distance of 1 
km in ArcGIS Viewshed Analysis tool.  For this reason, in all evaluated cases, CPLEX was not able to prove the 
optimality of its solution within the allowed time.5  Figure 9 shows the results for the set cover problem.  On the 
left hand side of Figure 9, we present, for different allowed solving times, the minimal total number of watchers 
obtained by CPLEX.  While the best solution, found after 45 minutes of solving time involved a total of 119 
watchers, only 4 minutes were required to obtain a solution with only 2 more watchers (121 instead of 119).  It 
is worth noting that after having let the program run for 12 hours, we were not able to improve our solution 
beyond 118 watchers.  On the right hand side of Figure 9, we present the duality gap we obtained for the 
solutions of the left plot.  In optimization, the duality gap may be interpreted as how-far the solver is from 
proving the optimality of its current best solution.  In integer linear programming, a duality gap of 0 percent is 
achieved when the solution is optimal. 

Figure 10 shows the results obtained on the unstructured environment of the Montmorency forest for the 
maximum coverage problem.  Table 1 presents the detailed results for all problem instances.  We allowed 
CPLEX a maximum of 10 minutes.  As the total number of allowed watchers increases, the number of 
uncovered cells diminishes reaching a minimal value of 37.  So even though the solver was unable to prove the 
optimality of its solution when we used 120 watchers, less than 1% of the vertices are left unobserved.  We 
observe the same tendency in the case of 100 watchers where 1% of the vertices only are left unobserved. 

 

Figure 10.  The best achieved maximum coverage on the Montmorency forest (left) and its duality gap (right) versus 

the number of watchers after 10 minutes of solving time  

                                                           
5
 The set cover problem and the maximum coverage problem are NP-hard problems (Garey and Johnson, 1979).  
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No. of 

watchers 

Time 

(s) 

Duality gap 

(%) 

No. of non-covered 

cells 

 No. of 

watchers 

Time 

(s) 

Duality gap 

(%) 

No. of non-covered 

cells 

1 2.4 0 5820  60 600 13 555 
10 3.7 0 4225  70 600 22 345 
20 7.5 0 2923  80 600 38 223 
30 65.7 0 1962  90 600 49 121 
40 420.4 0 1304  100 600 72 63 
50 600 5 848  120 600 100 37 

Table 1.  The best achieved maximum coverage on the Montmorency forest after 10 minutes of solving time 

  As we know from our set cover problem solutions, 120 watchers are enough to cover the whole visibility graph 
whereas no optimal solution under 118 watchers has been found.  Given our software and hardware 
configurations, using the set cover problem formulation for larger number of watchers is more efficient than 
using the maximum coverage formulation. 

CONCLUSION 

We have presented an integrated GIS-based approach to obtain optimal visibility graphs.  We illustrated the use 
of the set cover problem and the maximum coverage problem formulations to discretize structured and 
unstructured real practical environments.  The detailed method integrates GIS tools, computational geometry, 
and optimization techniques.  We have shown that near-optimal results can be obtained in very short times.  We 
believe that in critical situations with short response times, an optimal visibility graph map, computed in a 
reasonable time, provides an efficient basis for real-time planning of complex emergency operations.  Our main 
contribution resides in the integration of the GIS and optimization in order to solve real size problems in a 
reasonably short time.  The method is compatible with other optimization techniques. Further research includes 
the development of dynamic visibility constraints such as smoke and fog. 
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