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ABSTRACT 

Disasters often lead to other kinds of disasters, forming multi-hazards such as landslides, which may be caused 
by earthquakes, rainfalls, water erosion, among other reasons. Effective detection and management of multi-
hazards cannot rely only on one information source. In this paper, we evaluate a landslide detection system 
LITMUS, which combines multiple physical sensors and social media to handle the inherent varied origins and 
composition of multi-hazards. LITMUS integrates near real-time data from USGS seismic network, NASA 
TRMM rainfall network, Twitter, YouTube, and Instagram. The landslide detection process consists of several 
stages of social media filtering and integration with physical sensor data, with a final ranking of relevance by 
integrated signal strength. Applying LITMUS to data collected in October 2013, we analyzed and filtered 34.5k 
tweets, 2.5k video descriptions and 1.6k image captions containing landslide keywords followed by integration 
with physical sources based on a Bayesian model strategy. It resulted in detection of all 11 landslides reported 
by USGS and 31 more landslides unreported by USGS. An illustrative example is provided to demonstrate how 
LITMUS’ functionality can be used to determine landslides related to the recent Typhoon Haiyan. 
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INTRODUCTION 

Natural disaster detection and management is a significant and non-trivial problem, which has been studied by 
many researchers. A conventional approach relies on dedicated physical sensors to detect specific disasters, e.g., 
using real-time seismometer data for post-earthquake emergency response and early warning by Kanamori 
(2005). A more recent approach explores the big data from social networks such as Twitter functioning as social 
sensors, e.g. in the work by Sakaki, Okazaki, and Matsuo (2010). Since physical sensors (e.g., seismometers) are 
specialized for specific disasters, people have placed high expectations on social sensors. Besides, few physical 
sensors exist for the detection of multi-hazards such as landslides, which have multiple causes (earthquakes and 
rainstorms, among others) and happen in a chain of events. However, despite some initial successes, social 
sensors have met serious limitations due to the big noise in the big data generated by social sensors. For 
example, Twitter filter for the word “landslide” gets more tweets on the 70’s rock song “Landslide”1 than 
landslide disasters that involve soil movement. 

In this paper, we describe and evaluate a landslide detection system LITMUS, which is based on a multi-source 
integration approach to the detection of landslides, a representative multi-hazard. LITMUS integrates 
information from a variety of sensor sources instead of trying to refine the precision and accuracy of event 
detection in each source. Our sources include both physical sensors (e.g., seismometers for earthquakes and 
weather satellites for rainstorms) and social sensors (e.g., Twitter and YouTube). Although we still have some 
technical difficulties with filtering out noise from each social sensor source, LITMUS performs a series of 
filtering steps for each social sensor, and then adopts geo-tagging to integrate the reported events from all 
physical and social sensors that refer to the same geo-location. Our evaluation shows that with such integration 
the system achieves better precision and F-measure in landslide detection when compared to individual social or 
                                                             
1 http://en.wikipedia.org/wiki/Landslide_(song) 
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physical sensors. 

This paper makes several contributions. The first contribution is the construction of a landslide detection system 
LITMUS that integrates online feeds from five sources. Two of sources are physical sensors: seismic activity 
feed provided by USGS and rainfall activity feed provided by NASA TRMM. Three sources are social sensors: 
Twitter for text information, Instagram for photos, and YouTube for videos. We believe the combination of 
these relatively independent sources of data enables LITMUS to improve the precision and accuracy of landslide 
detection. The second contribution is a quantitative evaluation of the system using real world data collected in 
October 2013. LITMUS detected all 11 landslides reported by USGS as well as 31 more landslides unreported 
by USGS during this period. The final contribution is an illustrative example of the functionality of the system 
to determine a list of landslides caused by the recent Typhoon Haiyan, which devastated the Philippines on 
November 8th. 

OVERVIEW OF APPROACH 

For better understanding of our landslide detection system LITMUS, we present an overview of the system’s 
data flow in Figure 1. 

 

Figure 1.  Overview of Data Flow 

The system starts with the raw data collection. It periodically downloads data from multiple social and physical 
sensors. The social sensors supported by LITMUS are popular social network sites, namely Twitter, YouTube, 
and Instagram. Each of these sensors is among the leading social networks in their respective areas. LITMUS 
extracts the data from these sensors by applying a search filter based on landslide related keywords. We perform 
noise filtering in a series of filtering steps, including filtering out items based on stop words and stop phrases, 
filtering items with accurate geo-tags based on the geo-tagging component, filtering relevant items based on the 
machine learning classification component, and filtering out items based on a blacklist of URLs – see Figure 2, 
where “+” indicates an inclusion type of filtering and “-” indicates an exclusion type of filtering. LITMUS also 
collects data from the physical sensors, namely the seismic activity and the rainfall activity feeds. We support 
them in our system because these feeds are related to hazards that may cause landslides. 

 

Figure 2.  Noise Filtering Steps 

In the end, we combine the remaining items from the social sensors with all items from the physical sensors 
based on the relevance ranking integration strategy. The final output of the system is a list of detected landslides 
with location information and relevance scores. 

1P. Physical Sources Support 

LITMUS collects data from several physical sensors. In particular, LITMUS supports a real-time seismic 
activity feed from the United States Geological Survey (USGS) agency2. This feed is updated every minute 
                                                             
2 http://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php 
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providing information about earthquakes of various magnitudes. LITMUS downloads the data from USGS on 
earthquakes of 2.5 magnitude and higher. USGS provides programmatic access via a well-structured GeoJSON 
format that can be conveniently parsed. It provides time, magnitude, latitude, longitude, name of the place where 
an earthquake occurred and an event ID. 

Another potential cause of landslides is rainfalls, which is why LITMUS also collects data from the Tropical 
Rainfall Measuring Mission (TRMM) project (http://trmm.gsfc.nasa.gov/). It is a joint project between NASA 
and the Japan Aerospace Exploration Agency (JAXA), which generates reports based on the satellite data of the 
areas on the planet that have experienced rainfalls within the past one, three and seven days. The reports are in 
multiple formats, including a web page on the project’s portal, from which LITMUS periodically downloads and 
parses data about rainfalls. 

1S. Social Sources Support 

F1. Filtering based on keywords 

According to the research on citizen activity done by Palen, Anderson, Mark, Martin, Sicker, Palmer, and 
Grunwald (2010), social networks have emerged as destinations for collective disaster-related sensemaking. 
LITMUS uses the data from social networks to help detect landslides as reported by the public. In particular, 
LITMUS downloads the data from Twitter as an example of a text based social network, YouTube as an 
example of a video based social network and Instagram as an example of an image based social network. All 
listed social networks provide programmatic access to their data via search API based on keywords. LITMUS 
downloads the data from each social network based on “landslide” and “mudslide” keywords. 

F2. Filtering out based on stop words and stop phrases 

Next, LITMUS performs filtering by excluding social sensor items that contain negative stop words with respect 
to landslides, such as “fleetwood” or “election”. The following is a set of examples from Twitter that represent 
unrelated to landslides items containing these stop words: 

 “Landslide by Fleetwood Mac will forever be one of my favorite songs.” 

 “Abbott builds on election landslide: TONY Abbott is riding a post-election honeymoon high, with 
nearly half of... http://t.co/P17WAyxud2” 

LITMUS also removes items based on stop phrases that currently contain excerpts from the lyrics of some 
popular songs that are commonly used in social networks, e.g. the lyrics from the “Landslide” song by Stevie 
Nicks from Fleetwood Mac: “...and I saw my reflection in the snow covered hills...” 

F3. Filtering based on geo-tagging 

After LITMUS downloads the data from the physical and social sensors, we need to obtain geo locations of the 
downloaded data. The data from the physical sensors already contains geo coordinates. Unfortunately, the data 
from the social sensors is usually not geo-tagged since few users disclose their locations. Thus, if an item 
coming from a social source is not geo-tagged, we need to look for geo terms inside the textual description of 
the item. An important component included in social sensor items is mentions of place names that refer to 
locations of landslides. An exact match of words in the textual description of an item is performed against the 
list of all geo terms. For the list of geo terms we use the approach introduced by Hecht et al., (2011) to locate 
accurate geo coordinates based on the titles of the geo-tagged Wikipedia articles. However, different types of 
geo coordinates are supported in the geo-tagged Wikipedia articles. Some of them, like “city” or “country”, are 
more relevant than others, such as “landmark”, which often returns irrelevant matches like “houses” or “will”. 

However, the relevance quality of this algorithm should be improved further. For example, some geo terms may 
appear valid, such as “Says”, which was a municipality in Switzerland, or “Goes”, which is a city in 
Netherlands, however they are also verbs that are commonly used in English texts. That is why prior to applying 
the geo-tagging algorithm on the downloaded social media data, LITMUS performs pre-filtering of the words 
inside those items using Part-Of-Speech tagging by excluding non-noun words from consideration. 

There are also geo terms like “cliff” or “enterprise” whose type is “city” that are not very helpful for the purpose 
of landslide location estimation. The algorithm would incorrectly retrieve “cliff” as a geo term from the 
following YouTube item: “Driver Survives Insane Cliff Side Crash.” The reason why these words are irrelevant 
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is because they happen to be common nouns, in other words they are used in English texts a lot. To mitigate this 
issue we use a list of 5000 most frequent words in English based on the Corpus of Contemporary American 
English (http://www.wordfrequency.info) and exclude those results from the list of geo terms. 

Among the supported social sensors, YouTube in particular contains a lot of items where in addition to some 
valuable information related to landslides, they also contain unrelated information. The following is an 
illustrative example that follows such pattern: 

“After fatal Flash Flood, Mudslide, More Rain Possible for Colorado and other states youtube 
original. news bloopers, fox news,onion news,funny news bloopers, news failbreaking news,bbc news news 
reporter news fails cbs news cnn news world news us news uk news syria today syria war syria 2013 syria 
new,syria news,damascu,syria damascus, syrian army,syrian,syria execution...” 

It is clear that “Colorado” is a relevant geo term, whereas “Syria” and “Damascus” are not. In order to take into 
account patterns like this, we augmented the geo-tagging algorithm as follows: the input text is broken into 
sentences and for each sentence we find the geo term that is the closest to the landslide keyword. In this example 
the landslide keyword is “mudslide” and the closest available geo term is “Colorado”, hence the geo-tagging 
algorithm correctly outputs “Colorado”. 

F4. Filtering based on machine learning classification 

The social sources in LITMUS frequently return items that are not relevant to landslides, even though they 
contain landslide keywords. The following is an example of irrelevant items that use “landslide” as an adjective 
describing an overwhelming majority of votes or victory: “We did it! Angel won in Starmometer 100 Most 
Beautiful Women in the Philippines for 2013! Landslide victory due... http://t.co/2g6ozhJhpj” 

To filter out such items from the social sensors LITMUS employs binary classification, a machine learning 
technique to automatically label each item as either relevant or irrelevant based on classifier model built from a 
training set containing labeled items. To prepare a training set we need a list of confirmed landslides. For this 
purpose we use expert landslide publications. The USGS agency, in addition to earthquakes, also publishes a list 
of landslide events collected from external reputable news sources, such as Washington Post, China Daily, 
Japan Times and Weather.com (http://landslides.usgs.gov/recent/). For each event in this list we identify the 
date of release and geo terms. 

To find the social network items related to confirmed landslides within each month, we first filtered the data 
based on the landslide locations extracted from the confirmed landslides. Then we manually went through each 
item in the filtered list to make sure that they described corresponding landslides by comparing the contents of 
the items with the corresponding landslide articles. And whenever there were URLs inside those social items, 
we looked at them also to make sure that they were referring to the corresponding landslides. 

The following is an example of a landslide confirmed by the Latin Times news source, which was published on 
September 11, 20133: “Mexico Mudslide 2013: 13 Killed in Veracruz Following Heavy Rains.” The geo terms 
that LITMUS extracted from this news title are “Mexico” and “Veracruz”. 

To create a list of unrelated items in the training set, we randomly picked items from each social source and 
manually went through each item. But this time we had to make sure that the items did not describe landslide 
events. 

F5. Filtering based on blacklist URLs 

During the analysis of social media items containing URLs, we found out that in several cases the short URLs 
were expanded into the same web site (http://keywordresistancefront.com) that generated random content with 
high-value keywords such as “mudslide”. Based on this result we created a blacklist of URLs and added a filter 
to exclude items containing such URLs from consideration. 

3G. Grid based location estimation 

As a result of the previous stages in the system’s data flow shown in Figure 1, LITMUS has a set of relevant and 

                                                             
3 http://www.latintimes.com/articles/8234/20130911/13-dead-veracruz-mudslides-landslides-mexico-
rains.htm#.UjDOD5LFVBk 
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geo-tagged items from physical and social sensors. Next LITMUS integrates those items by grouping them 
based on their geo coordinates to determine areas on the planet where landslides might have occurred. For this 
purpose we propose to represent the surface of the Earth as a grid of cells. Each geo-tagged and relevant to 
landslide item is mapped to a cell in this grid based on the item’s geo coordinates. After all items are mapped to 
cells in this grid, the items in each non-empty cell are counted per each source. Currently we use a 2.5 minute 
grid both in latitude and longitude4, which corresponds to the resolution of the Global Landslide Hazard 
Distribution5. This is the maximum resolution allowed by the system. The actual resolution is driven by the 
precision of the geo-tagging algorithm described in section F3. 

4I. Integration based on relevance ranking strategy 

After mapping all items to cells in the grid, we obtain a set of non-empty cells. These cells represent areas on the 
planet where landslides may have occurred. To tell which cells are more likely to have experienced landslides, 
we propose a Bayesian model strategy and compare it with two baseline strategies – “OR” and “social AND 
physical”. For “OR” integration strategy, we grant equal weights to all sensors. And we obtain the decision by 
combining the votes using boolean operation OR among five sensors. For “social AND physical” integration 
strategy, we use boolean operation OR to combine the votes from social sensors and physical sensors separately 
first. And then we calculate the combined result by applying boolean operation AND between votes from social 
and physical sensors. For instance, if the votes from five sources (Twitter, Instagram, YouTube, USGS, and 
TRMM) are 1,1,0,0, and 0, the “OR” strategy will return 1, but the “social AND physical” strategy will return 0. 

The description of the Bayesian model strategy is as follows. Suppose, there is a cell x and ω is the class 
associated with x, either being true or false. Then, assuming a hidden variable Z for an event to select one 
source, a probability for a class ω given x, P (ω | x), can be expressed as a marginal probability of a joint 
probability of Z and ω: 

(1) ( ) ( ) ( ) ( )∑∑ ==
i

iii xZPxZwPxZwPxwP ,, , 

where external knowledge P (Zi | x) denotes each source’s confidence given x. For instance, if a certain source 
becomes unavailable, the corresponding P (Zi | x) will be zero. Also one could assign a large probability for the 
corresponding P (Zi  | x) if one source dominates over other sources. 

In our experiment, to provide a balance between precision and recall, we use prior F-measure C from the 
training dataset as the confidence for each source. Keeping the results in the range from 0 to 1, we normalize the 
values of F-measure into a scale between 0 and 1 first. After taking the number of items N from each source into 
account, the formula will be further converted into the following format: 
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=∑ x
i

x
i

i N
N
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where Ci denotes the normalized prior F-measure of source i from historic data (we use August and September 
data in our experiments). x

iN  denotes the number of items from source i in cell x indicating that a landslide 
occurred in the area covered by cell x. It should be noted that for Bayesian model strategy we ignore cells with 
only 1 vote, i.e. where the total count of items in that cell is equal to 1. This is done to reflect the idea of a multi-
source integration as opposed to a single source analysis. 

IMPLEMENTATION SUMMARY 

LITMUS is developed using free and open-source software. It consists of a front-end implemented as a Web 
application and a back-end, which is the core of the system. The front-end is a live demonstration that runs on 
Apache web server. It uses Google Maps JavaScript API to render all feeds, including detected landslides, and 
PHP to access LITMUS’ back-end. The back-end is developed in Python, except for binary classification for 
which we used Weka’s library implemented in Java – see Hall, Frank, Holmes, Pfahringer, Reutemann, and 
Witten (2009). All data from social and physical sensors is stored in MySQL. The data has been collected since 
August 2013 and takes up 1.7GB on disk. The total number of lines of code is 12k. 
                                                             
4 http://en.wikipedia.org/wiki/Latitude_and_longitude 
5 http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-hazard-distribution 
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EXPERIMENTAL EVALUATION 

In this section, we present an experimental study using LITMUS. We designed 4 sets of experiments to evaluate 
its performance. We start by analyzing the effectiveness of the filtering techniques that are employed in social 
sensors to retrieve landslide relevant items. Next we compare the performance of physical sensors that monitor 
seismic and rainfall activities as possible causes of landslides. In the third experiment we measure the 
effectiveness of 3 integration strategies of both social and physical sensors to find the optimal integration 
strategy. And in the last experiment we compare the overall performance of LITMUS in landslide detection 
using the chosen strategy versus an authoritative source of landslide events compiled by USGS. 

Retrieval of Landslide Relevant Items from Social Media 

Overview of filtering results 

As we mentioned earlier, LITMUS performs a series of filtering steps on the data from social sources to retrieve 
landslide relevant items. Table 1 contains the results of the filtering steps on the data collected during the 
evaluation period, which is the month of October in 2013. It shows that Twitter has the most number of items 
and that the geo-tagging component filters out most of items. 

         Filtering 
               steps 

Sources 

F1. Filter 
based on 
keywords 

F2. Filter 
based on 
stop words 
& phrases 

F3. Filter 
based on 
geo-tagging 

F4. Filter 
based on 
classifi-
cation 

F5. Filter 
based on 
blacklist 
URLs 

4I. Integration 
based on 
relevance 
ranking strategy 

Twitter 34508 24898 6107 4630 4624 3861 
Instagram 1631 1403 178 13 13 8 
YouTube 2534 2221 331 182 182 105 

Table 1.  Overview of filtering results 

Features used in classification 

The filtering step F4 employs SVM, which is an algorithm for training a support vector classifier. The training 
dataset needed by the algorithm consists of social source items in August and September 2013, including 12,328 
tweets, 1,266 Instagram images and 3,174 YouTube videos. In classification, we extracted a set of features 
based on the textual description of items from each social source. In particular, we created 3 groups of features 
that are applied to each source: 

1. Common statistical features: 1) length of the textual description, 2) number of uppercase characters, 3) 
position of the query term in the textual description divided by number of words, 4) number of 
lowercase characters, 5) total number of words, 6) maximum word length, 7) minimum word length, 8) 
average word length, 9) code of the most common character. 

2. Binary features: presence of the following elements – 1) at sign, 2) URL, 3) percentage, 4) geo-term, 5) 
number, 6) hashtag, 7) exclamation mark, 8) question mark, 9) ellipsis, 10) double quotes, 11) colon, 
12) ‘♥’ symbol, 13) ‘♫’ symbol. 

3. Vocabulary based features: 1) relevant vocabulary score, 2) irrelevant vocabulary score. For these 
features we collect the lists of words (or vocabularies) based on the training set, which contains items 
labeled as relevant and irrelevant. For each downloaded item we compute the total count of words that 
are present in the relevant vocabulary list, which we call a relevant vocabulary score, and also the total 
count of words that are present in the irrelevant vocabulary list, which we call an irrelevant vocabulary 
score. 

The following is an example Tweet with the corresponding feature values below: “Philippines - Travel News - 
Death toll reaches 32 following monsoon rains, landslides and flooding #Philippines #travel #safety #flooding” 

1. 1) 137, 2) 5, 3) 0.588, 4) 132, 5) 17, 6) 11, 7) 2, 8) 6.588, 9) 32. 

2. 1) False, 2) False, 3) False, 4) True, 5) True, 6) True, 7) False, 8) False, 9) False, 10) False, 11) False, 
12) False, 13) False. 

3. 1) 0.185, 2) 0.099. 
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Performance of social sensors 

To evaluate the performance of the social sensors we have used several criteria that are standard in the area of 
information retrieval, namely precision, recall and F-measure. Precision is the fraction of retrieved instances that 
are relevant, while recall is the fraction of relevant instances that are retrieved. F-measure considers both 
precision and recall and is the harmonic mean of precision and recall. 

 

Let us consider the relevance of the social sensors with 
respect to landslide disaster events based on these 
criteria. According to the results shown in Figure 3, 
Twitter has the highest recall as it has the most number 
of items among all sensors, whereas YouTube has the 
highest precision. Instagram showed the worst results 
among these sensors, as most of its images were 
unrelated to landslide events. Overall, Twitter has the 
highest F-measure in spite of its low precision, so any 
improvements in its precision should increase its F-
measure even more. 

 Figure 3.  Landslide relevance of social sources 

Analysis of Physical Sensors 

 

Figure 4.  Landslide relevance of physical sources 

For our next experiment we compare the relevance of 
the physical sources with respect to landslide disaster 
events, namely the seismic and rainfall activities – see 
Figure 4. LITMUS collected 6,036 seismic activity 
points provided by USGS and 723 rainfall observations 
provided by TRMM in October. Due to such gap in the 
sheer volume of data, the seismic activity sensor shows 
better recall, but both precision and F-measure are 
better for rainfalls, which means that in October the 
influence of rainfalls on landslides was relatively 
higher. 

Multi-Source Integration Strategies 

 

Figure 5.  Landslide detection performance of integration 
strategies 

In this experiment we compare the performance of the 
following relevance ranking strategies with respect to 
landslide detection: Bayesian model strategy versus 
two baselines – “OR” and “social AND physical” 
integration strategies shown in Figure 5. The “OR” 
strategy expectedly has the highest recall, because it 
includes all votes from each sensor in its decisions, 
which is also the reason why it has the lowest precision 
among all integration strategies. “Social AND 
physical” strategy produces a much better precision and 
F-measure, but very low recall. And the Bayesian 
model produces the best precision and F-measure 
results and an acceptable value of recall, which is why 
we select it as the best strategy for landslide detection 
among these strategies. 

System Performance Results 

LITMUS scripts run periodically where a period is customizable and currently set to 30 minutes. During each 
period, LITMUS performs a series of filtering steps F1 through F5 followed by integration step 4I. For each step 
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we provide Latency and Throughput metrics to evaluate the system performance shown in Table 2. 

                 Filtering 
                       steps 

Metrics 

F1. Filter 
based on 
keywords 

F2. Filter 
based on 
stop words 
& phrases 

F3. Filter 
based on 
geo-
tagging 

F4. Filter 
based on 
classifi-
cation 

F5. Filter 
based on 
blacklist 
URLs 

4I. Integration 
based on 
relevance 
ranking strategy 

Latency (s) 1318.1 13.3 218.2 60.5 670.8 13.7 

Throughput (items/s) 11.0 1090.2 35.8 37.9 1.2 462.5 

Table 2.  Overview of system performance results for a period from 2013-12-12 to 2013-12-19. F5 has the lowest 
throughput due to the cost of short URL expansion. F1 has low throughput due to pagination and extra delays when 
downloading the data. F3 and F4 also have low throughput due to the costs of geo-tag search and classification model 
generation. 

Latency is a time interval between the beginning and end of each processing step and Throughput equals the 
total number of items processed at each step divided by the amount of time to process them. 

Landslide Detection Results 

LITMUS detected 42 landslide events in October. Of these 42, 11 were reported by USGS – see here6. In 
addition, LITMUS detected 31 landslides not reported by USGS. For each landslide we have performed manual 
verification by finding other reputable sources that would confirm the detected landslide events. We made sure 
that both locations and dates of the events were confirmed. 

This is an example tweet regarding a landslide event that occurred in Obudu Resort, Nigeria in October, which 
was not reported by USGS: “Over 20 People Trapped In Obudu Resort Mudslide http://t.co/aaOUn5465m” 
(posted 10/17/2013). The tweet contains a shortened URL that points to a news article on Channels Television 
website7, which confirms the location and the date of the landslide event. 

It should be noted that 1 event reported by USGS was not an actual disaster report, namely: “Flash Floods and 
Debris Flows: How to Manage Nature’s Runaway Freight Trains” (posted 10/30/2013). LITMUS successfully 
did not detect this report as a landslide event. All of the remaining reported events were successfully detected by 
the system. 

LIVE DEMONSTRATION 

We developed a live demonstration of the landslide detection system LITMUS as part of the GRAIT-DM 
project’s web portal (https://grait-dm.gatech.edu/demo-multi-source-integration/). The web portal demonstrates 
multiple functionalities supported by LITMUS, including live feeds from each social and physical sensor, a 
separate feed of landslides detected by the system, support for viewing detailed information about each feed, 
and various user options to analyze results further – see Figure 6. 

 

Figure 6.  LITMUS live demonstration 

                                                             
6 http://landslides.usgs.gov/recent/index.php?year=2013&month=Oct 
7 http://www.channelstv.com/home/2013/10/17/over-20-people-trapped-in-obudu-resort-
mudslide/?utm_source=dlvr.it&utm_medium=twitter 
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The data from all feeds is displayed on a Google Map. Each feed can be turned on and off to give a user an 
ability to view the data from a particular feed or a combination of feeds. Users can also obtain detailed 
information regarding each feed. For example, if the feed is from the Instagram sensor, then they can view the 
related images. Similarly, if the feed is from the YouTube sensor then they can view the related videos. Finally, 
it should be noted that LITMUS has been collecting the data from all sensors since August 2013 only. 

Typhoon Haiyan (Yolanda) 

As an illustrative example of LITMUS functionality, let us consider the top event identified by the system in 
November 2013. As of November 14th, the table on the live demonstration page shows that within the last 7 
days the cell with the top landslide score is the one for Philippines, which has been devastated by Typhoon 
Haiyan (known in the Philippines as Typhoon Yolanda) on November 8th. To find out which landslides have 
been caused by this event during this period we need to use the Select area option described above. Using this 
feature we cover the area of Philippines and recompute the results by applying the changes. 

The table now shows 21 locations identified by LITMUS as landslide events in the selected area, including: 

 Manila: “100 dead as storm ripped apart buildings and triggered landslides in #Manila 
http://t.co/6tpLlxyBVy http://t.co/Sw09WyR6KQ” 

 Cebu: “MT Province of Cebu @cebugovph 4m  #YolandaPH Another landslide also reported in 
barangay Buhisan, #Cebu City #hmrd” 

1 result out of 21 was falsely identified as a landslide event, namely: 

 Antipolo: “No reported floods, landslides in #Antipolo as of 7:23 p.m. --Dodie Coronado, PIO | 
@KFMangunay @InqMetro #YolandaPH” 

RELATED WORK 

Disaster detection based on social media received a lot of attention in the last several years. Most of previous 
research studies focused on a single social network. For instance, Guy, Earle, Ostrum, Gruchalla, and Horvath 
(2010) described Twitter Earthquake Detector (TED) system that infers the level of public interest in a particular 
earthquake based on Twitter activity to decide which earthquakes to disseminate to the public. Sakaki et al., 
(2010) investigated the real-time nature of Twitter for detection of earthquakes. Caragea, McNeese, Jaiswal, 
Traylor, Kim, Miltra, Wu, Tapia, Giles, Jansen, and Yen (2011) compared different classification approaches on 
the Haiti disaster relief dataset obtained from the Ushahidi project. Starbird, Muzny and Palen (2012) 
investigated the performance of machine learning techniques in identifying on-the-ground twitterers during 
mass disruptions. Imran, Elbassuoni, Castillo, Diaz, and Meier (2013) classified unstructured tweets into a set of 
classes and extracted short self-contained structured information for further analysis. Our disaster detection 
approach differs in several ways. We propose to integrate data from multiple social sources as opposed to a 
single social source. We also investigate the detection of multi-hazard disasters, in particular landslides, which 
can be caused by various hazards, such as earthquakes and torrential rains. That is why our system also 
integrates data from physical sources, including seismic activities and rainfalls. 

Another important aspect of a disaster detection system based on social media is situational awareness. 
Although most of social networks provide support for users to disclose their locations, e.g. when they send a 
tweet or share a photo, Cheng, Caverlee, and Lee (2010) showed that less than 0.42% of all tweets actually use 
this functionality. Vieweg, Hughes, Starbird, and Palen (2010) analyzed microblog posts to identify information 
that may contribute to enhancing situation awareness. Cheng et al., (2010) proposed and evaluated a 
probabilistic framework for estimating a Twitter user’s city-level location based on the contents of tweets. Hecht 
and Gergle (2010) proposed to match locations in user profiles against the titles of Wikipedia articles containing 
geo coordinates. Hecht, Hong, Suh, and Chi (2011) showed that 34% of users did not provide real location 
information in their Twitter user profiles, and those that did input their locations – mostly specified at a city-
level detail. Sultanik and Fink (2012) demonstrated a rapid unsupervised extraction of locations references from 
tweets using an indexed gazetteer, which is a dictionary that maps places to geographic coordinates. Our system 
also extracts geo terms from the textual descriptions of data from social media using the Wikipedia articles 
containing geo coordinates as an indexed gazetteer. We improve the precision of this geo-tagging algorithm 
based on a number of heuristics to filter out irrelevant matches. 
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CONCLUSION 

In this work we describe the landslide detection system LITMUS, which integrates multiple sources to detect 
landslides, a representative multi-hazard. In particular, the system integrates social sensors (Twitter, Instagram, 
and YouTube) and physical sensors (USGS seismometers and TRMM satellite). The data from social sensors is 
processed by LITMUS in a series of filtering steps, including data collection based on landslide keywords, a 
filter based on stop words and stop phrases, a smart geo-tagging filter, a machine learning based classification 
filter, and a filter based on a blacklist of URLs. The remaining data from social sensors as well as all data from 
physical sensors are combined for the final integration of all sensors to produce a list of detected landslides. 

The effectiveness of the system is evaluated using real world data collected in October 2013. The full 
integration of five sensor sources applying a modified Bayesian integration strategy detected all 11 landslides 
reported by USGS as well as 31 more landslides unreported by USGS during the evaluation period. 

The user functionality of the system as well as its application to Typhoon Haiyan is described in the Live 
Demonstration section. The landslide detection system LITMUS is online and openly accessible, collecting live 
data for continued evaluation and improvement of the system, and the reader is encouraged to use the demo. 
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