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ABSTRACT 

In this paper we present Aurorasaurus: a website, a mobile application, and a citizen science initiative that allows a 

community of users to report and verify sightings of the Aurora Borealis. Through ad-hoc data indirectly offered 

through social media, a community of citizen scientists verify sightings of the Aurora Borealis. These verified data 

are tested against currently existing aurora-forecasting models. The insights these data provide are transformed into 

map and text-based forms. In addition, notifications are sent to interested participants in a timely manner.  This is a 

design test-bed for an early warning system (EWS) that is capable of detecting and communicating the earliest signs 

of disaster to community members in near real time. Most importantly, this system incorporates community 

participation in improving the quality of data mined from Twitter and direct community contributions. 
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INTRODUCTION 

Among the fields that study information and communication during crisis and emergencies, there has been a great 

rush to make data originating from the crowd useful during a response. The approach has often been: (1) collect 

data indirectly from the crowd by scraping it from social media sources, (2) Aggregate and process it, and (3) serve 

it to responders. According to MacEachren, et. al. (2011) research has focused more on the challenges of extracting 

action items and location information from social media feeds. Ironically, most solutions to this problem do not 

involve direct contributions from the public itself.  

In the larger picture, the goal of this research is to put the public back in public informatics. Automated monitoring 

of social media data may provide some interesting insights; however, the great majority of scraped data is irrelevant 

to the needs of the public or responders. The computational power used to identify the relevant and useful elements 

is awesome though perhaps unnecessary. Unnecessary because community members themselves are in a unique 

position to view the data of computational processes and with a trained eye localize results to community needs. 

Data contributed directly by community members toward their own shared community information systems has far 

greater relevance, accuracy and utility to the public it serves.  

Members of an affected public are motivated to work toward their own safety, security, resilience and capacity. 

Members of the public are more likely to trust data from those they know and offer help to those they know, or at 

least those identifying as from the same location or group.  A motivated and trained public can both contribute 

directly to a shared information system and help process data scraped from a larger data ecosystem into a hybrid 

system that has the potential to be more accurate, timely and useful to the same community. 
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In the remainder of this paper we present a community-computational hybrid system through which community 

members can both directly contribute and help evaluate scraped data as part of a shared early notification system. 

Our system, Aurorasaurus, is a hybrid Early Warning System (EWS) for aurora borealis sightings. Aurorasaurus is 

a website, mobile application, and citizen science initiative that allows a community of users to help scientists better 

forecast the location and viewing conditions of the Aurora Borealis.  

The vision of Aurorasaurus leverages this to gather real-time data about the aurora in two ways, by direct entry into 

an online (or mobile) form, and by continuous scanning of Twitter for tweets about sightings. Combined with data 

from Earth-based and satellite observatories, this allows Aurorasaurus to offer near real-time predictions of auroral 

activity in both text and map form, likely with much greater accuracy and timeliness than the current state of the art.  

In the middle latitudes sightings of the Aurora Borealis are rare and more difficult to forecast or predict, much like 

an emergency or crisis. The similarities between a natural disaster occurrence and auroral occurrence offer a chance 

for researchers to test elements of an Early Warning System.  

A COMMUNITY-COMPUTATIONAL HYBRID  

Around 68% of all information system (IS) development and deployments fail (Krigsman, 2009). Failure can be 

outright non functionality or non-use rising to failure of process-taking over 180 percent of target time to deliver; 

failure of resource control--consuming in excess of 160 percent of estimated budget; or failure of functional match-

delivering under 70% of the target required functionality (see: Lyytinen & Hirshiem, 1987; Sauer, 1993). This 

failure is keenly felt in the public sector where resources and time are even more limited and functionality may be 

key to improving lives and outcomes of vulnerable populations. IS failure in the public setting is less tolerated and 

more difficult from which to recover. Therefore, when developing public information systems it is especially 

important to assure the greatest possible chances for success.  

It has been suggested that full engagement with the community for which the IS is being developed and deployed is 

essential to bringing about this success. In terms of developing and deploying IS for emergency management, 

several researchers have called for systematic, community integration and guidance of IS projects. (see Berg, 2001; 

Franco, et. al 2007; Kuziemsky, et. al., 2012; and  O’Sullivan et al., 2012). Ahmed, et al. (2012) suggest, 

“…omitting systematic, process-based community guidance of [IS for emergency management] technical solutions 

is a prospect that is, at best, doomed to expensive and often predictable failure. At worst, some of the solutions 

developed have the potential to do more harm than good.” There have been several notable collaborative IS for 

emergency management design and development projects in which local community non-profits, local 

governments, and local developers have engaged to co-create a system (e.g., Landgren, 2010; Troy, et al., 2008; 

Franco, et. al 2007; Kuziemsky, et. al., 2012; and O’Sullivan et al., 2012). According to Kuziemsky, et. al. (2012), 

public engagement is an essential precursor to designing an IS for emergency management and it must be actively 

pursued before any technology is designed. O’Sullivan, et, al. (2012) state, “the awareness that evolves from a truly 

collaborative, participative user-engagement process can be empowering, and can stimulate solution-oriented, 

creative thinking and innovation.”  

The question that must be asked is, why stop community engagement with the deployment of an information 

system? If community engagement is essential to the successful design, development and deployment of IS for 

emergency management, then the public should also play a more integral role in collecting data, inputting data, 

processing and evaluating data for the system. The public could also enjoy the direct benefits of their labor, as 

recipients of the outputs of the system. The system could be open so that members of the public can ‘look under the 

hood’ and see the system in action and witness how their contributions of time, labor, and data create the value 

offered to the community via the system. In other words, the public should be more fully integrated in the 

continuous functioning of the system. 

There is evidence that the public could play essential roles as part of such systems. While the strides in the area of 

big data analytics have met some of the demand, many problems have been identified that show the limitations of 

computational solutions. There are problems that only human cognition has been able to solve. Perhaps the most 

famous example of this is CAPTCHA (for an automated public turing test to tell computers and humans apart see 

von Ahn, et.al, 2004). A CAPTCHA is a program that protects websites against bots by generating and grading 

tests that humans can pass but current computer programs cannot. For example, humans can read distorted or 

variable text shapes or melded text, but current computer programs cannot.  

Several such human-required problems arise in the analysis of social media data for emergency response. Even with 

the very best analytical tools social media data defies natural language processing, sentiment analysis, data mining 

and machine learning interventions. The volume of social media data can be narrowed and focused, but not to the 
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necessary finite point of utility by a community or response organization. A ‘community-computational hybrid 

system is necessary to make the output of analytic approaches useful to communities and responders. For analytic 

outputs to be useful to community members they must be localized to community needs. For analytic outputs to be 

used in decision-making in emergency response requires a precise fit in terms of confidence in the analysis, in the 

data sources and in the format of the information. Human processing of data can meet the needs of communities and 

responders during a crisis in ways that computers cannot accomplish alone.  

In addition, during a crisis, being local to the community affected matters. Starbird, et. al (2012) state, “People who 

are on the ground are uniquely positioned to share information that may not yet be available elsewhere in the 

information space. Additionally, locals may have knowledge about geographic or cultural features of the affected 

area that could be useful to those responding from outside the area.” However, in her earlier study she also noted 

that during a crisis only a small portion of tweets contain information from local Twitter users (2010).  

Several researchers have examined the role of community members in filtering or improving data. Collaborative 

filtering is a technique for using the actions of a large number of people within an interaction space to filter 

information produced by that same group (Malone et al., 2009). Starbird and Palen (2012) reported that certain 

characteristics of crowd behavior could act as a collaborative filter for identifying people tweeting from the ground 

during mass disruption events in Egypt. Starbird, Munzy and Palen (2012) also examined the Occupy Wall Street 

movement to demonstrate the power of crowd-based action. For example, Mendoza et al. (2010) report evidence 

that the social media community can collaboratively act to identify bad information. Studying the propagation of 

rumors through the Twitterverse in the wake of the Chile Earthquake in 2010, they found that tweets containing 

false information were more likely to be challenged by other Twitterers.  

In addition there is growing informal digital response community (Starbird and Palen 2011) that recognizes and fills 

emergency needs using online tools like social media. These volunteers comprise individual citizens as well as 

more formalized groups, organizations, and communities. Digital volunteers have contributed to emergency 

response efforts by monitoring and responding to social media, creating and updating digital maps, and helping to 

coordinate relief and recovery (St. Denis, Hughes, and Palen 2012; Boehmer 2010; Norheim-Hagtun and Meier 

2010; Starbird and Palen 2013; van Gorp 2014). Each of these groups used a combination of crowdsourcing and 

computational techniques to collect relevant social media data, process and categorize the data, and plot the data on 

a map for the responding organization.  

 

CROWSOURCING WARNINGS 

An early warning system (EWS) is “the set of capacities needed to generate and disseminate timely and meaningful 

warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to 

act appropriately and in sufficient time to reduce the possibility of harm or loss” (Othman & Beydoun, 2010) 

To increase crisis detection capabilities, several scholars have turned to harvesting data from social media as a 

means to provide near real-time evidence of impending disaster as part of an early warning system. As the number 

and frequency of mentions of certain hazard-related terms increase, thresholds are crossed and warnings triggered.  

While there has been some early success in using social media data to forecast influenza rates, stock market 

fluctuations, and movie box office sales in near real time, (see Chen et al. 2010; Achrekar et al., 2011; Wolfram 

2010; O’Connor et al., 2010; Wakamiya et al., 2011; Lampos et al., 2010; Sakaki et al., 2010) there have been few 

instances in which social media data has been intentionally used as part of an early warning system for a natural 

disaster.  

To argue for the efficacy of Twitter as part of an early warning system, several scholars have demonstrated its 

limited power to forecast (see Arias, et al., 2012). Twitter has been used for real-time notifications such as large-

scale fire emergencies and downtime on services provided by content providers (Motoyama, et al., 2010).  

Most promising is the work by Paul Earle (2012) who developed algorithms that automatically detect large 

increases in the usage of the term Earthquake, in multiple languages, on Twitter. The algorithm found that TED 

(Twitter Earthquake Detection) often detected earthquakes in less than 1 minute; in fact, 75 percent of all detections 

occurred within 2 minutes, which is much faster than the time period of 2 to 20 minutes that traditional sensing 

methods require (Earle, et al., 2012). While it did detect earthquakes, and quickly, it missed many more during the 

same period. The US Geological Survey has also started the Citizen Seismology Project (Young, et al., 2013) in 

which these new detection algorithms are incorporated into citizen science efforts benefitting both scientific 

knowledge concerning earthquakes and early detection programs. 

Ginsberg et al. (2008) showed that the frequency of Google search terms can be used to build a linear model which 
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accurately estimates influenza incidence. Chen, et al. introduced a continuous data collection engine which 

combines the detection and prediction capability of social networks in discovering real world flu trends (Chen et al., 

2010; Achrekar et al., 2011). Wolfram (2010) attempted to predict the price of NASDAQ stock quotes by using 

Twitter as an additional source of information. Using similar techniques, other researchers have used Twitter data 

for prediction within presidential polls (O’Connor, et al., 2010), TV ratings (Wakamiya, et al., 2011), and influenza 

rates (Lampos, et al., 2010). Finally, Sakaki, et al. (2010) used built an autonomous earthquake reporting system in 

Japan using Twitter users as sensors.  

One project now run by the European–Mediterranean Seismological Centre (EMSC) seeks to both detect 

earthquakes using new detection methods and display these on their website in real time (see: Young, et al., 2013). 

However, this website gains more traffic after an earthquake has already occurred and is based on visits (pull) rather 

than alerts (push) interactions with the user. 

A project that is closest to our model comes out of the USGS (United States Geological Survey) initiated in 2006 

called the Earthquake Notification Service (ENS https://sslearthquake.usgs.gov/ens/). ENS is a subscription-based 

service, meaning that users must go online and create profiles that specify their alert needs. Users can customize the 

types of alerts that they want to receive, including magnitude, location, and time of an earthquake. Users can also 

choose to receive alerts via email or phone.  Unfortunately this service, despite its age, is not well used. 

EARLY WARNING SYSTEMS COMPONENTS AND DESIGN 

A comprehensive EWS usually consists of four key elements: (1) prior knowledge of the risks, (2) presence of a 

monitoring and warning service, (3) multi-layer information dissemination system, and (4) the capacity to take 

timely actions (UN, 2005). In order to be a functioning EWS, these integrated systems must be designed a specific 

disturbance in mind. An Integrated EWS is comprised of components designed to work together in order detect a 

disturbance that is pre-defined as environmental-stability threatening (United Nations, 2005). Integrated EWS’ are, 

“chain[s] of information communication systems comprising sensor, detection, decisions, and broker subsystems” 

(United Nations, 2005). These communication systems work together to observe the known behaviors of a 

particular phenomenon and signal brokers who then decide if action or response is needed.  

The best practice for EWS design was most recently put forth by Waidyanatha (2010) who spoke of the link 

between EWS components. The initial components are those that send the signal of detection – sensors. Sensors are 

instruments that can detect a change in the environment. These instruments could be biological, technological, or 

social. Sensors are the origin system of any EWS. Detectors are the second stage of sensing and these are 

instruments that allow the gathered information to be engaged and ultimately acted upon. Detectors are pre-

formatted systems or protocols that allow either an automated or person-based decision making system to be 

engaged.  

Most important to this work is the concept of the broker. Brokers are mediators between the sensors, who notice, 

and the responders, who act. A broker can be an individual or group, a system or human. Typically, these mediators 

are under strict protocols to gather information in order to send commands to dispatch for response. A broker is a 

multiple input multiple output system. We can call those who input messages, publishers, and those who receive 

messages, subscribers. The broker serves as a means of communication between these two types of participants. A 

broker serves as a central or origin source of communication (Waidyanatha, 2010). A broker may transform 

incoming messages from the language of sensors to the language of responders.  

If we examine the four key elements of an EWS mentioned previously, current approaches to integrate social media 

fall into the first two categories (detector and sensor) and ignore the second two (broker and response). Many have 

examined social media data for its ability to serve as a sensor, or input, often in a passive way. These current 

models may be improving their ability to detect known crisis events through algorithmic manipulation of data 

gathered and scanned from the crowd, but the results of these analyses are not integrated into the third and fourth 

key elements of an EWS. The results must be disseminated to the population at risk and these results must be able 

to produce timely action.  

There are three problems with designing EWS, though only the first is crippling. The core issue first encountered 

with building any early warning system is testing. Natural disasters are rare and unpredictable. As such, artificial 

data, scenarios and laboratory experiments, or the analysis of past data, can never deliver the essential quality 

needed for an early warning system—the ability to detect and deviate from planned procedures given the 

unexpected.  Second, early warning systems must be an integrated chain of links that begin with detection of known 

disasters and end with notification and action (Waidyantha, 2010; Sakaki, et al., 2010; Stankiewicz, et al., 2013).  
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While social media data analysis is improving at the detection phase, the results of these social media sensors have 

not yet been integrated into a whole chain where they can deliver real-time actionable alerts.  Third, high 

functioning early warning systems require multiple sensors as inputs, multiple modes of alert notification as 

outputs, and a community of semi-passive observer-participants able to receive and act of an alert. While there have 

been some projects that have attempted to integrate both physical and social media data into an alert system, none 

have integrated these algorithmic attempts with a community of observer-participants capable of accurate analysis 

in real time.  

AURORASAURUS 

Predicting when and from where the aurora can be seen is a non-trivial task. Space weather scientists use a suite of 

different methods to try to predict when the aurora might be seen (e.g. Newell, 2009; Sigernes, 2012). The strength 

of an aurora, and thus its location, is driven by the Sun’s activity and the conditions in interplanetary space. In 

addition to driving the aurora, it is well known that space weather can have a strong, damaging, effect on both 

space- and ground-based technologies (e.g. NERC, 2012). While predicting when these space weather dangers 

might occur is an important task; we focus only on the less dangerous, but more beautiful, northern lights. 

 

Figure 1 - Aurorasaurus Homepage. 

An alpha version of Aurorasaurus (Aurorasaurus 1.0) has been live on the web for two years and has shown 

promising results. At its core, Aurorasaurus offers an estimate of the aurora’s location and character while 

simultaneously seeking participatory data for improving forecasts of where the Aurora will be and is currently. It 

does this through the data it aggregates. First, we gather ad-hoc data indirectly offered by the crowd through social 

media. These data are filtered via keyword and with the help of citizen scientists, are further refined and verified. 

These verified data are then tested against predictive data from space weather observatories from around the world.  

Risks are identified and sensors calibrated for those risks. In our case the “risk” is the event of a visible aurora over 

large population centers. Sensors are of three types, (1) physical, those scientific instruments that measure the 

atmospheric charged particles and solar emissions, (2) social media data in-directly gathered form Twitter in real-

time that speak of aurora sightings, and (3) human. To address the third part of an EWS, notifications of aurora 

events are sent to community members who have registered to receive alerts when an aurora is seen within a certain 

radius of their location. These notifications are provided on multiple platforms and encourage the receiver to get a 

camera, go outside and look up. 
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PASSIVE DATA COLLECTION AND IMPROVEMENT 

In general, the tweets rise when auroral activity rises above background levels and when the aurora starts to be 

visible over more populated areas. The Twitter data stream requires a significant level of filtering to select aurora-

related tweets from the daily 300-500 million tweets shared in total. Our current classification algorithm, trained on 

a set of tweets manually classified by us, divides a tweet stream initially filtered by keyword into the following 

classes: positive sighting (i.e., someone saw the aurora), negative sighting (someone looked for the aurora but failed 

to see it), desire to see the aurora, not aurora related, and unclassifiable. Geo-location is accomplished either by 

using the geotag provided by Twitter directly (typically derived from GPS or other automated location services) or a 

gazetteer-based approach applied to toponyms (place names) in the tweet text or user profile. This yields 

approximately 400 tweets on a typical day and 1,000 or more during a non-routine event. 

We bring users into the tweet filtering loop by allowing them to give feedback on the classification algorithm’s 

judgments, using up- and down- votes similar to those found on the Reddit social news site (Potts, et al); this will 

both improve the algorithm’s accuracy and make it more nimble in the face of changing language. Second, we 

integrate improved location inference techniques (for example, Priedhorsky et al. 2014). 

The crux of how Aurorasaurus functions as an EWS is how it gathers, verifies, and distributes its data. Any time 

there is an aurora, viewable from an area with a human settlement that has widespread access to the internet; there is 

a constant stream of tweets associated with it. As Aurorasaurus gathers tweets, some server-side filtering is 

undertaken (for example to remove tweets from Twitter users with “aurora” in their username). Tweet location is 

extracted via the open-source CLAVIN geo-parsing software and stored on our server for users to verify manually.  

 

Figure 2 – A histogram of the daily number of aurora-related tweets spanning from September 2012 to March 2014.  

Verification involves allowing our users to vote on whether a tweet is a real observation of the aurora. These 

observations are then combined with the direct entry of auroral observation (via a mobile or website form) in order 

to create alerts. If a certain score is achieved, the tweet is classified as a real sighting and is treated like a reported 

observation. In this way, it functions both as a sensor and broker.  

In Figure 2, we present a histogram of the daily number of unverified aurora-related tweets, recorded between 

September 2012 and March 2014. The histogram bar is purple if a peak in the number of daily tweets is detected 

and this peak coincides with strong geomagnetic activity (i.e. a Match). The bar is colored red if a peak in the 

number of tweets is detected but this does not correspond to strong geomagnetic activity (i.e. a False Positive) and 

is colored blue if there is strong geomagnetic activity but no corresponding peak in the number of tweets (i.e. a 
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False Negative). The grey bars indicate that there was no strong geomagnetic activity on that day and that the 

number of tweets did not constitute a peak value. 

We find that, during this 18 month period, 81% of geomagnetic storms are detectable by a peak in the number of 

aurora-related tweets. This detection rate is improved by modifying how we define the background level, however, 

this results in an increased number in false positives.  

We define a geomagnetic storm by a period in which the Dst index is less than -40nT over a sustained period. The 

Dst index is a measure of the disturbance of the Earth’s magnetic field (Sugiura, 1964). Increasingly large negative 

values of Dst (especially less than -40nT) indicate a geomagnetic storm is underway. As stated before, strong 

auroral displays, visible from lower magnetic latitudes, are associated with geomagnetic storms. 

It is clear that the peaks in the number of daily Tweets match well with times of geomagnetic storms. This indicates 

that the number of aurora-related Tweets increases during times of strong geomagnetic activity (i.e. when an aurora 

is most likely to be visible to larger numbers of people).  

DIRECT DATA COLLECTION VIA WEB FORMS 

Each user of the Aurorasurus website may click on a link that states that they are currently viewing the aurora and 

want to report a sighting. The site asks if it can use the current location of the user as the location of the aurora 

sighting but also gives the user the option of adding a custom location. It then asks the user to report the date and 

time, the color of the aurora, the shape and movement of the aurora, the height in the sky and activity level of the 

aurora. Lastly, the user is encouraged to make comments about the aurora. During our initial data collection phase, 

of September 2012 through May 2014, we collected 2109 web observations via this form.  

Not all observations were viable observations, but of those that were we were able to compare the number of 

observations against the Kp index of the period. Of the 2109 we received, 595 were real reports (i.e. not spam). Of 

those, 59 were observations of an aurora (the other 536 were saying they could not see an aurora What we found 

was interesting and is shown in Figure 3. The rise in the number of web observations preceded the Kp index by a 

few hours to a day and remained high during the event. We attribute this to the users of the site being strongly 

aware and observant of news reports concerning solar flares and coronal mass ejections and anticipating aurora.  

 

Figure 3– A histogram of the daily observation levels and the maximum daily Kp index. 

Shown in Figure 3 is a histogram of the daily number of observations reported to the Aurorasaurus website during 

the initial data collection phase. Positive observations (where the user saw the aurora) are colored blue; negative 

observations (where the user did not see the aurora) are colored red. Plotted over the histogram in orange is the 

daily maximum Kp value.   

Owing to the small number of observations, direct correlations between the number of observations and the Kp 

index are not meaningful. However, as expected and as with tweets, the observations tend to be reported when Kp 

levels are elevated.  

October 2013 

January 2014 
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There are two specific periods of interest which are worthy of note. In October of 2013, the number of observations 

increased by a factor of ten as the Kp index rose significantly and the aurora moved southward into more densely 

populated areas.  In January of 2014 news outlets were reporting a potential visible aurora so activity on the site 

increased, but the Kp index did not rise and the auroras were in fact not visible at lower latitudes. This could be 

seen as a false positive. More valuable are the small peaks, as represented at the end of February and beginning of 

March 2014 where we see a small rise in both the Kp index and the number of observations. 

In addition, we make Aurorasaurus more fully available in the field where its services are most useful. If the user 

makes a positive aurora sighting the user may then use the mobile application (Aurorasaurus mobile) to submit a 

positive sighting of the aurora directly. Users can take a photo or video of the event and tag it with location, color, 

and height in the sky and aurora type. The user enters this data on a simple mobile form. This entry contributes to 

improving the prediction algorithms of aurora activity in general and contributes to the predicted aurora oval made 

by Aurorasuarus in the specific at that time and location, allowing other users to be more confident in their seeking 

a sighting. We have IRB approval from two institutions (Los Alamos National Labs and Pennsylvania State 

University) to collect data from human subjects for this research. 

The third and fourth elements of an early warning system are notification and action.  To address the third part of an 

EWS, notifications of aurora events are sent to community members who have registered to receive alerts when an 

aurora is seen within a certain radius of their location. Notifications of an aurora event can be provided via text or 

email in near real time based on location. Push notifications to alert users can be of ongoing or even expected aurora 

activity in their locale. These notifications are provided on multiple platforms and encourage the receiver to get a 

camera, go outside and look up, in other words, take action. 

The hybrid-forecasting engine combines data from physical, social and community sources to produce and estimate 

of the aurora oval. This is displayed on the map, which is visible on all platforms, including mobile platforms, again 

providing information to the aurora seeker in the field.  

DISCUSSION 

The central take-away from this paper should be that twitter alone can be seen as a good predictor of visible auroral 

activity, however, when this data is combined with data that has been improved by community members and data 

that has been directly contributed by community members, the ability of the system to predict auroral activity 

significantly rises. When community members help collect the data and improve the data, the utility of the system 

for the community also rises. Lastly, when community members participate in the data collection and improvement 

they become interested, and vested, in the overall project. It becomes, in part, their project and motivation ceases to 

become insurmountable. At the time of writing this paper data was available from one significant solar storm in 

which community members made direct contributions (59 posted actual sightings to the website), this, in 

combination with the up-and-down voted tweets, helped to improve the predictor engine.  

This strong engagement between the designers and researchers involved in the project and the community of users 

through the continued, active engagement in data collection and improvement, is the model that is carried through 

to our extension to an early warning system. As mentioned above, in order to perform at their highest potential, 

early warning systems must present four key elements: (1) prior knowledge of the risks, (2) presence of a 

monitoring and warning service, (3) multi-layer information dissemination system, and (4) the capacity to take 

timely actions.   

A comprehensive and effective early warning system would fully engage the public in all four elements of such a 

system. In the case of aurorasaurus, the greatest impact can be seen in improvements of parts 2 and 3, a monitoring 

and warning system and an information dissemination system. Community contributors act as part of the system, 

scanning the skies, taking pictures, recording data and uploading this material in a timely fashion. Community 

contributors monitor the changing map displayed on the website homepage seeking knowledge concerning the 

position of the auroral oval and then taking action based on its movement. Community contributors read collected 

semi-filtered tweets concerning auroral activity and improve their quality by selecting actual sightings, which then 

appear on and improve the auroral map. All of these activities involve and engage the community in monitoring 

both the physical and online worlds and offering warning when the aurora moves closer to a given geographic 

location. Aurorsaurus also engages the community via notifications triggered by both data contributed by scientists 

and community members, addressing the information dissemination element of an EWS.   

Aurorasaurus has the potential to be a community-driven EWS broker. The essential link between the first two 

elements and the second two elements of an EWS is the broker, the link between monitoring and notification. 

Current attempts to integrate data from the crowd or social media have not yet moved beyond the stage of 
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contributing the results of social media monitoring to existing monitoring systems. Aurorasaurus functions as 

sensor, detector, and broker. There are multiple inputs and multiple outputs to the same system. We believe that the 

map and the visualization of the auroral oval, and positive sighting pins, in real time is the key to this broker 

function. It translates data from three sensors types, (1) physical, those scientific instruments that measure the 

atmospheric charged particles and solar emissions, (2) social media data indirectly gathered from twitter in real time 

that speak of aurora sightings, and (3) data that is directly contributed by community members on confirmed 

sightings—to a single visual pane. This allows the viewer to interpret the current location of the visible aurora in 

relation to themselves in that moment and decide to take action. As the map updates with new data it allows the user 

to interpret changes in the location of the visible aurora and make predictions and change their behavior 

accordingly. Ultimately, Aurorasaurus serves as a prototype early warning system that integrates the community of 

users at each phase.  

CONCLUSIONS 

Seeing the aurora is often an emotionally meaningful moment in someone’s life, one which merits membership in 

“bucket lists” and/or major travel at financial and time cost. In this context, the significance of a solar maximum, 

auroral activity moves southward, become viewable by larger populations; that is, the aurora comes to the people 

rather than the people coming to the aurora. However, while visible aurora becomes more likely at middle latitudes, 

it is still a rare event — one cannot intuitively know when and where aurora will appears. Therefore, a mechanism, 

which alerts interested parties to this event, is valuable in itself. Communities are already interested in the aurora 

and would be further motivated to participate if they could be alerted to potential sightings in real time. Aurora 

sightings have the potential to yield insight for both applications, serving as the motivation for participation in an 

early warning system as well as citizen science projects. 

We argue that this broadly shared deep interest provides two valuable opportunities. First, it can contribute to the 

body of scientific theory and practice around the aurora. Finally, it can provide a testing environment for a 

crowdsourced and community-based early warning system. 

We have demonstrated that the peaks in the number of Tweets concerning aurora match well with times of 

geomagnetic storms. This indicates that the number of aurora-related Tweets increases during times of strong 

geomagnetic activity (i.e. when an aurora is most likely to be visible to larger numbers of people). Despite this 

strong correlation, we have also demonstrated that human intervention is essential to increasing the predictive 

power of the system. At best we were able to predict 81% of storm activity. With community-based filtering by 

members the predictive ability of the system increases.  

Most importantly we have demonstrated that the combination between all three sensors, the Tweets themselves, the 

filtering by community members and the sightings directly contributed by community members leads to a stronger 

prediction engine, better nowcasting of the aurora event, better visualization through mapping and more timely and 

geographically precise notifications.  

While this paper does not reflect the citizen science elements of the project due to space constraints, the community 

of users for aurorasaurus is both interested in and contributes to space weather science. Participants are offered 

educational modules about space weather and training on how to filter images and tweets as they arrive. This 

encourages learning about space weather beyond that of common knowledge. Free text observations in existing 

social media, structured observations entered via questionnaire, both text and visual, comprise scientific 

contributions to improve understanding auroral activity and prediction. This research will have a positive impact on 

the concept of nowcasting and forecasting as they relate to space weather.  

We expect that our tools will serve as a proof-of-concept for crowdsourcing other forms of early warning system. 

Such a system could be employed during other kinds of disasters such as earthquakes, tornados, tsunamis, and 

flooding. That is, real-time alerts informed by crowd participation could save lives. 
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