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ABSTRACT 

Autonomous systems are being exceedingly used to assist humans in various crisis responses scenarios such as 
earthquakes and nuclear disasters. Because they operate in highly unstructured and uncertain environments, 
failures are an inherent part of such autonomous systems, and, techniques for making these systems robust to 
failures arising from computer hardware, software or communication malfunctions are already integrated into 
their design. However, an important aspect while designing such systems is often times overlooked:  how to 
better coordinate and communicate across distributed, possibly diverse human teams who are working in 
cooperation with autonomous systems into the design of the autonomous system itself. Unfortunately, this 
results in limited adoption of autonomous systems in real-life crisis scenarios. In this working paper, we 
describe ongoing work that attempts to address this deficit by integrating research on shared mental models 
between humans with techniques for autonomous agent team formation in the context of search and rescue 
scenarios.  
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INTRODUCTION 

Timely and effective responses to disasters are an integral part of every crises management system. Over the 
past decade, intelligent autonomous systems (IAS) have been employed extensively in different domains to 
provide efficient and rapid responses to crisis. Examples include search and rescue robots for assisting humans 
during relief and cleanup activities following natural calamities such as earthquakes, fire and flooding (Erdelj, 
Krol and Natalio, 2017; Maza et al., 2011; Sable et al., 2018), intelligent agents that can predict damage to 
infrastructure or presence of hazardous material following disasters such as chemical or nuclear accidents 
(Sanchez-Cuevas, 2019; Sanchez 2018), and intelligent robots that can perform preventive maintenance tasks 
such as infrastructure inspection of bridges and buildings or underwater inspection of structures such as ship 
hulls (Perrot et al., 2015). However, most of these IAS have focused on two areas – 1) how to build 
sophisticated hardware and software algorithms that can operate autonomously in unstructured environments 
and uncertain, unprecedented conditions with minimal human intervention, and, 2) how to adapt the IAS’ 
behavior and decision-making so that it can interact in a socially amiable, trustworthy and reassuring manner 
with the human operating or interacting with it. The design objectives of these IAS have mainly focused on 
improving the performance efficiency of the IAS, such as the time required and energy (battery) expended to 
perform its assigned task, and, in some cases, the satisfaction of the human user with using the IAS. 
Consequently, before deployment, the IAS are tested within simulated environments while interacting with a 
very limited number of humans. For example, the 2015 DARPA Robotics Challenge (DeDonato et al., 2017) 
required a humanoid robot IAS to interact only with objects in its environment such as a door handle, fire hose, 
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stairs, etc. Most importantly, the IAS’ performance while interacting with another human or human teams was 
not validated as a performance criterion in the challenge. 

We use this example to highlight that crisis management poses some unique challenges in the context of human-
human and human-machine interaction that are usually not encountered in non-crisis or simulated-crisis tasks. 
Most importantly, crisis management is led by crisis management teams (CMTs) that are drawn from humans 
with diverse background and expertise including first responders, law enforcement, medical personnel such as 
doctors and nurses, legal personnel and even citizen volunteers (Yu and Khazanchi, 2015). Each of these 
individuals is required to work collaboratively with each other and with IAS. Unfortunately, in an unstructured 
and previously un-encountered scenario like a crisis, when the conventional modes of operation and interaction 
between human-human and human-machine are drastically altered, the performance of humans and IAS could 
both get severely degraded. In extreme cases, this could result in delayed or inaccurate responses, or even an 
inability to respond in crisis scenarios. Our research in this working paper proposes to address this deficiency by 
utilizing a model for human team formation drawn from coalitional game theory (Shoham and Leyton-Brown, 
2009) that would enable IAS to identify and suggest ways to assimilate teams of humans based on their 
expertise and past performance within a team, as well as adapt the behavior of the IAS while working with an 
assimilated team of humans, so that the crisis management task could be handled efficiently. 

RELATED WORK 

Collaboration between human and agent teams has been an active research area in the field of artificial 
intelligence for almost two decades. Research in this area can be broadly divided into two directions – robot-
based systems and multi-agent systems. Disaster robotics research (Murphy, 2014), led mainly by the robotics 
and engineering community, has made large advances in the past decade with robots being used in dangerous 
and hazardous tasks including moving concrete chunks, exploring tunnels, diffusing explosives and searching 
for hazardous material such as nuclear or chemical traces (Recchiuto et al., 2016; Schwarz et al., 2014; Haynes 
et al., 2015; Leingartner et al., 2018; Kochersberger et al., 2017). However, much of this research has focused 
on engineering highly dexterous and robust robots that can operate either via teleoperation, or, in some cases 
autonomously, within adverse and unstructured environments. To the best of our knowledge, robotic disaster 
response systems that integrate close coordination between teams of humans and teams of robots have not been 
fielded or researched extensively. 

Within the multi-agent systems community, a large portion of the research has focused on the problem of task 
allocation – how to assign tasks to agents so that the tasks can be performed effectively by the agents, such as 
reducing the time or effort (e.g., energy or battery) required to complete tasks and reducing the overlap or 
conflicts between agents while performing tasks. Much of this work has been validated within simulated agent 
environments closely resembling disaster scenarios (Massaguer et al., 2006). In one of the earliest and seminal 
works in this direction (Shehory and Kraus, 1998) proposed a distributed coalition formation algorithm, where 
transportation-like tasks, e.g., moving blocks between locations, were allocated to teams of agents based on their 
capabilities. Several authors (Klein, Bradshaw, Woods, Hoffman and Feltovich, 2004; Jennings et al., 2014) 
also laid foundation for effective cooperation between human-agent teams through a set of requirements that a 
human-agent collective should satisfy. These requirements included defining a mutually agreeable contract 
between agents and humans to perform a task jointly, being accountable to each other by revealing individual 
plans and intentions, being flexible to each other’s requirements, having intelligent capabilities to interpret and 
predict each other’s decisions and actions, and incentivizing each other’s actions by forming coalitions, 
negotiating goals, managing attention and controlling costs. Future research on human-agent team formation 
emphasized one or more of these aspects while using a suitable computational framework to represent the 
interaction between agents and humans. For example, (Ramchurn et al., 2015, Ramchurn et al., 2016) proposed 
the HAC-ER (Human Agent Collective for Emergency Response) system that uses a framework called multi-
agent Markov Decision Processes (MMDP) to formalize the decision making by agents to select tasks within an 
emergency task response scenario. A novel direction explored in this work was to include input from real-life 
human-in-the-loop operators to approve and selectively reassign task allocations before dispatching agents to 
tasks. In (Tambe, Bowring, Jung, Kaminka, Masheswaran, Marecki, et al., 2005), authors observed that unifying 
different individual frameworks into hybrids were more effective than a single framework for performing 
collective tasks in disaster scenarios. For instance, integrating belief-desire-intent (BDI) and partially observable 
Markov Decision Processes (POMDP) frameworks enabled each framework to efficiently perform computations 
at different levels of information abstraction, for multi-agent task allocation and multi-agent communication in 
disaster scenarios. Later extensions of this concept were applied to human agent teams in security management 
scenarios in airports (Pita et al., 2008). Recently, researchers have also focused on integrating human-agent 
collaboration within the context of massively multi-player online games (MMOGs) (Chan and Vonderer, 2005; 
Sourmeilis, Ioannou and Zaphiris, 2017). (Hafizoglu and Sen, 2018) explored the evolution of trust in human-
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agent team within the context of an online trust game, while (Wicke and Luke, 2017) have modeled human-
agent collaboration as a treasure hunting game where each human-agent team has to select different tasks to 
perform. Several interesting techniques for human agent team formation in disaster response scenarios have also 
been proposed in the Robocup Simulation Rescue League challenge (RSRL, 2019) where teams of simulated 
agents representing first responders have to coordinate with each other to perform disaster response tasks. In 
summary, majority of these research focus on sophisticated algorithms to enable intelligent agents to plan to 
perform tasks, either collectively or individually, while the human’s role is limited to oversight of agents’ 
actions along with intermediate revisions of agent allocations or roles, as necessary. In other words, agents 
assume the role of human avatars with embedded intelligence while humans assume the role of supervising their 
avatars. To the best of our knowledge, a unified system, where human teams work alongside agent teams, while 
sharing work and responsibilities, has not been fully researched. Our proposed work attempts to address this 
deficit by proposing a framework where agents form coalitions while building a representation of the shared 
mental model (SMM) of human coalitions or teams within them. This iterated modeling enables agents to 
quickly identify high-performance human teams and, in parallel, adapt the agent coalitions, so that the 
capabilities of human-agent teams can be matched for improving task performance. To achieve this, in our 
proposed solution, we utilize two formalisms rooted in game theory and graph theory called coalition formation 
in weighted voting game and bipartite graph matching. 

SHARED MENTAL MODELS OF CRISIS MANAGEMENT TEAMS 

We have previously argued that one of the essential tasks of crisis management is to develop shared mental 
models (SMM) among teams and members about the crisis at hand, i.e. shared understanding of the task, 
process, technology and the teams (Yu and Khazanchi (2015). Developing SMM is essential for developing an 
effective crisis management strategy. Teams can form three types of mental models - information technology 
mental models, taskwork mental models, and teamwork mental models (Mathieu et al., 2000; Thomas & 
Bostrom, 2007; Thomas & Bostrom, 2010). A team’s IT mental model is the knowledge structure and beliefs 
held by the team about the information technology capabilities and the usage of these capabilities (Thomas & 
Bostrom, 2007). A team’s taskwork mental model is the knowledge structure and beliefs held by the team about 
the task goals, steps to accomplish the tasks, and the technologies used to accomplish the tasks (Mathieu et al., 
2000). The teamwork mental models refer to the knowledge structure and beliefs held by the team about the 
team interaction and team members’ roles, skills, and knowledge (Mathieu et al., 2000). Assessment of shared 
mental models’ convergence is mostly focused on measuring the degree to which knowledge structures overlap 
or are similar among the team members, i.e. the SMM similarity (Yu & Khazanchi, 2015; Mohammed et al., 
2010). 

PROPOSED FRAMEWORK: UNIFYING SHARED MENTAL MODEL WITH COALITION FORMATION 

In our proposed approach, we posit that more effective human-agent teams can be formed in crisis scenarios if, 
for a certain task, a team of autonomous agents is paired with a team of humans who have a high possibility of 
interacting and collaborating efficiently with each other. This step is challenging because, although individual 
humans might possess desired skills or capabilities for the task, inefficient interaction between humans in a team 
might degrade the performance of the task (Yu & Khazanchi, 2015). We propose to address this problem using a 
two-step procedure, as described below.  

STEP 1: HUMAN TEAM IDENTIFICATION USING WEIGHTED VOTING GAMES 

Given a task to perform in a crisis scenario, the first step in our proposed human-agent team formation technique 
is to identify a team of individuals with diverse set of expertise suitable for a task, such that the humans in the 
team can efficiently collaborate with each other to perform the task. The team should also contain only the 
individuals essential to perform the task, as including unnecessary or superfluous individuals could hinder and 
delay the task’s performance due to inter-team collaboration issues. To quantify the collaboration potential of a 
set of individuals, we can use mental model measures for teamwork, taskwork and information technology to 
represent the suitability of an individual in a team (Yu & Khazanchi, 2015). These measures of a team’s SMM 
convergence represent different aspects of an individual i relevant to functioning as part of a team, as described 
below: 

• Teamwork mental model convergence (ri) represents a team members knowledge structure and beliefs
about team interaction and other team members’ roles, skills, and knowledge;

• Taskwork mental model convergence (ti) represents the knowledge structure and beliefs held by the
team about the task goals, steps to accomplish the tasks, and the technologies used to accomplish the
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tasks; 

• Information Technology mental model convergence (qi) represents the knowledge structure and beliefs
held by the team about the information technology capabilities and the usage of these capabilities for
performing the task.

The values of these suitability parameters could be solicited as input from humans in the team and conditioned 
with data from their past performances of in teams. In (Yu & Khazanchi, 2015), we have described case studies 
of using these suitability parameters for a team of individuals performing an information technology 
management task  These parameters are aggregated into a single suitability parameter, called the individual i’s 
weight, wi, and given by: 

, subject to, 

,  and  are preferences over the suitability parameters and could be specified as inputs when a task is 
assigned to the team. With more experience of a team, these preferences could also be learned from past 
performances of the team in performing different types of tasks. This weight is then used in a coalition game 
framework called a weighted voting game (WVG) (Shoham and Leyton Brown, 2009). A weighted voting game 
denoted by the tuple (N, W, q) consists of the following attributes: 

• N: a set of individuals, also called players

• W={wi}:, a set of real-valued weights, where wi  represents the weight or suitability parameter of the i-
th individual in the team

• q: quota, a real valued number representing a minimum threshold value that the combined weights of
individuals should satisfy to be able to form a team.

Figure 1. A Weighted Voting Game (WVG) with quota, q = 15. (a) Grand coalition with all humans is a 
winning coalition as it satisfies quota, but is not minimal with 6 individuals, (b) Coalition with 5 individuals is 
also satisfies the quota and is a winning coalition, but is not minimal with 6 individuals, (c) None of the 
coalitions are winning coalitions as they do not satisfy the quota (d) A minimum winning coalition that satisfies 
quota and is also minimal with 4 individuals. 
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To implement a voting game, all possible subsets of the players are  determined. Note that for N players there 
can be 2N possible subsets. For each subset S , in the 2N possible subsets of the N players, the combined 
weight of the players in S is calculated as . Finally, if the combined weight reaches the quota, that is, if 

, then S is accepted as a winning coalition. The output of a WVG is a set of minimal winning 
coalitions (MWCs) – the smallest set(s) S out of the winning coalitions. Every WVG is guaranteed to have at 
least one MWC as long as  An example of a weighted voting game is shown in Figure 1. Here six 
individuals with different weights or suitability parameter values have to form a team to perform an assigned. 
The objective of forming the team is to include the essential or smallest set of individuals required to perform 
the task. A quota value, q=15, is calculated for the task and given as input to the WVG. There are multiple 
winning coalitions in this WVG, two of which are shown in Figures 1(a) and 1(b). But there is only one MWC 
with four individuals, as shown in Figure 1(d). Figure 1(c) shows sets of non-winning coalitions that are not 
capable to perform the task as they are unable to reach the quota. Note that, in general, as the number of 
individuals in the scenario grows, or, as the value of quota, q, changes, the number of MWCs can become more 
than one. In other words, the minimal winning coalition is not unique and multiple teams or coalitions can be 
output by the weighted voting game. Consequently, the problem of calculating MWCs can quickly become non-
trivial to solve as the number of players or individuals, N, increases.   

In our earlier work (Dasgupta and Cheng, 2016), we had proposed two heuristic-based algorithms with proven 
performance bounds for calculating the MWC in a WVG, in the context of multi-robot team formation. These 
algorithms are able to calculate the MWC in polynomial and log-linear time respectively and are able to scale 
adequately with the number of players or individuals in the scenario. In this work, we plan to adapt those 
algorithms for identifying suitable human teams that are suitable for effectively performing the assigned task. 
Our main ongoing research questions in this direction are how to reliably elicit and combine the task suitability 
parameters from humans for determining the input weights of the WVG, how to address the complimentarity of 
individual skills or capabilities of humans while forming a team, and, how to calculate a suitable value of the 
WVG quota input, q, from the characteristics or features of a task that needs to be performed. 

STEP 2: EFFICIENT HUMAN-AGENT COALITION FORMATION USING PREFERENCE-BASED GRAPH MATCHING 

After suitable human teams have been identified in step 1 above, the next step towards forming human-robot 
collectives is to identify appropriate robots that could be paired with the human teams. In step 2 of our 
algorithm, we assume that different teams for different sub-tasks are formed by running the WVG algorithm 
multiple times, once for each sub-task. For example, in a post-earthquake scenario, a team comprising of medics 
and first responders could be formed to perform a sub-task of providing healthcare to injured persons, while 
another team comprising of medics and military personnel could be formed to clear debris and rescue persons 
trapped under rubble. For this, each human team formed from step 1, expresses its desired capabilities from 
robots in the form of preference values over the set of available robots. For example, a human team comprising 
of a medical doctor, a firefighter and a law enforcement officer might have a high preference for a group of 
three robots that can assist respectively with surgical assistance, with clearing and removing debris, and with 
detecting hazardous substances in the environment.  This problem is non-trivial as there could be preference 
conflicts between human teams for the same set of robots, and, there could also be constraints between robots 
such as limited number of robots with certain specialized sensors or actuators being available, suitability of pairs 
of robots to work well with each other, etc. To address this problem, we adopt a framework from computational 
economics called matching with preferences (Pycia, 2012). The objective of the problem is to find a complete 
matching between two sets of agents such that every agent from one set is paired with exactly one agent from 
the other set and the preference values between the sets of agents is maximized. For our problem, the two sets of 
agents are the human teams and robots, and the result is a matching between a human team and a set of robots 
while maximizing the preference values given by human teams for the robots collectives. This would guarantee 
that the humans in the human team have the best match of skills and capabilities with the autonomy of the 
agents in the robot team. Overall, this would result in improved performance of the human-robot collective. 

We plan to adapt a bipartite graph matching algorithm from our previous work on configuration formation by 
robot teams (Dutta and Dasgupta, 2017; Manne and Hiesling, 2007), to address our human-robot team matching 
problem. The algorithm takes as input a set of team of humans H and the set of robots R as two disjoint sets. 
Each human team i has a preference parameter pij that represents the value of a match between the autonomous 
assistance desired by human i and the capability of robot j. The objective of the algorithm is to find a set of 
matchings that maximizes the sum of preference values. Mathematically, this can be represented as 

 such that | pij | = |H|. The algorithm works by first enumerating partitions, , of the robot 

set, R, such that |  |=|H|. For each partition , it then finds an initial matching where each human team 
 is matched to its highest preferred set of robots in . These matchings are removed from the sets of 
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human teams and robots, and the process continues sequentially until all human teams are matched with sets of 
robots. An example of a matching between three human teams, each with an ordered set of preferences over sets 
of robots is shown in Figure 2. The output of the algorithm is a set of matchings between human teams and 
robots that has the maximal sum of preference values, which guarantees that each human team is paired with its 
most preferred (but not all) set of robots. This problem is an instance of the set packing problem that is a well 
known NP-hard problem. Within this framework, some of the research questions we are investigating include 
speeding up the computation of the maximal matching using recent results from coalition game theory (Hatfield, 
Kominers and Westcamp, 2017), integrating dependencies or externalities between the robot sets, where the 
formation of one set of robots affects the preferences of other sets of robots, and, considering the matching 
problem with dynamically varying preferences of human teams.  

Figure 2. Matching between three human teams (formed in step 1) with different sets of robots. The values of 
the different matches to each team are specified by the individuals in the team and shown as edge weights 
between teams and corresponding robot sets. The matching algorithm returns the maximal matching (shown as 
solid edges, circled edge weights) between the human team and robot sets that gives the highest combination of 
preference values. Non-maximal matches, shown with dashed lines, are not selected. 

ONGOING WORK AND CONCLUSIONS 

Currently, we are working on formalizing the different research questions and implementing software 
algorithms in the two-step process for integrating shared mental model (SMM)-based human team formation 
with human-robot collective formation in the context of crisis management scenario. We plan to evaluate our 
software algorithms on the Repast multi-agent simulation environment within simulated disaster scenarios, 
while drawing inspiration from situations and environments featured in the Robocup Rescue Simulation League 
(Robocup Rescue Simulation League, 2019). In the future, we plan to integrate machine learning-based 
techniques into our proposed algorithms towards speeding up the computations and making them robust to 
errors in individuals’ reporting of their capabilities and preference for robot assistance. Machine learning 
algorithms usually require training the model being learned with data from team formation in disaster scenarios. 
Real-life data for such scenarios will most likely be difficult to obtain. To address this data scarcity problem, we 
plan to generate virtual, game-like setups that model disaster scenarios, and engage humans to form teams to 
perform simulated tasks within the game setup. The data generated during these games could then be used to 
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train the machine learning-based models required by our algorithms. Another direction worth investigating in 
the future is to form teams with a specified number of humans with certain expertise, e.g., a team with at least 
five firefighters and two paramedics. Such constraints on team formation could be handled by richer 
representations of coalition games beyond weighted voting games in step 1 of our algorithm, such as marginal 
contribution nets (MC-nets). Awareness theory, eliciting human and agent preferences, and dependencies 
between formed coalitions are additional future directions that we plan to investigate. 

Our proposed work investigates a novel direction by integrating human cognitive processes through shared 
mental models into team formation with autonomous agents. In the future, we envisage that this work will lead 
to many interesting problems and solutions towards making systems requiring tight coordination and close 
interactions between human and AI more efficient, reliable and trustworthy in crisis management scenarios. 
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