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ABSTRACT 

In a crisis with casualties, while there is no medical intervention, the severity of the injuries increases, and some 
people may die. Since the number of rescuers is limited, it is necessary to perform a planning and a deployment of 
this resource on the basis of a risk criterion illustrating the potential increase of the number of casualties at each 
point of the concerned area. Emergency planning is still a poorly developed science [3]. This paper provides a 
dynamical model for the number of casualties, inspired from the Verhulst model classically used for biological 
systems [5], to evaluate this risk criterion as a function of future time. It calculates the evolution of  the number of 
unrescued casualties, the number of dead people, and the number of rescued people, as a function of the number of 
rescuers. Numerical results are shown. 
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INTRODUCTION 

Context 

When a disaster has just made casualties, it is crucial that they receive care soon otherwise they may die [1] [2]; 
hemorrhages must be stopped (e.g. a bleeding femoral artery kills in less than 2 minutes); mouth-to-mouth 
resuscitation can save if it is initiated within a few minutes; and unconscious victims may suffocate if they are not 
turned on their side. Wounds involving vital organs may also lead to death more or less rapidly. 

Care can be provided by brigades and first aid rescuers in addition to emergency physicians. When the disaster is 
serious, such rescue teams can be sent from other locations in the region. We propose to improve the emergency 
planning task [8] with a decision-making support tool performing a quantitative risk analysis (QRA) [4].  

The question is to decide where and how many rescuers must be sent, coping with two problems: the total number of 
rescue resources is limited (at least for a while), and for some locations they are delayed by their way. The planning 
and deployment tasks must be performed on the basis of a risk criterion indicating the degree of emergency and the 
potential increase of casualties in each place of the concerned area. 

Emergency planning is poorly developed science [3], which is still lacking of mathematical methods. This paper 
proposes a dynamical system modeling of the evolution of the number of casualties when they are waiting for care. 
It is derived from biological mathematical models [5], which describe the evolution and equilibrium of mixed 
populations. These are here the unharmed, the injured and the dead people. Dynamical system modeling is a relevant 
approach for risk assessment [6]. 

The studied parameters 

The risk is defined here by the forecasted expected additional number of future casualties weightened by the severity 
of their injuries. The described risk prediction algorithm is applicable at every location in the area of interest (city, 
region...), considered as a pixel in a map.  

The first risk will be modelled as the expected number of casualties that are still alive in the studied location, 
weighted by the seriousness rate of each one’s injury. For risk prediction, this variable must be estimated for a future 
time t and will be denoted as It. The expected number of dead people is denoted by Dt, the rescued are Rt (as for It, 
this is the number weighted by the seriousness). The number of rescuers (brigades, doctors, rescuers...) is Bt. This Bt 
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parameter is the system input provided by the decision maker. Note that Bt can be the result of a coupled planning 
and deployment algorithm, since the overall number of rescuers is a limited resource, and there are access delays. 
These variables are an Xt vector’s coordinates: 
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This vector is a dynamical system that will be modelled in the proposed approach in the form: 

Xt+1 = f(Xt) 

One can also introduce the internal variable Ct = It + Dt + Rt which represents the total of casualties. Of course one 
must take into account the initial population N0 by respecting the constraint Ct ≤ N0. The other constraint is that none 
of these variables can be negative. The studied models are discrete-time and t is supposed to be sampled regularly at 
a meaningful period (i.e. about 10 minutes). 

INJURY WORSENING MODEL 

Before introducing the rescue effect, in this section we propose the model for injury evolution without rescuers. 
Only two variables are concerned: 
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and this vector must remain in a constrained set K: 

Xt ∈ K = { (x,y) ∈ ℝ+2 : x + y ≤ N0 } where ℝ+ = [0;+ ∞[. 

The classical Verhulst model 

The classical one-dimensional logistic model, also known as Verhulst model [5], is a tradeoff between the natural 

Malthusian growth of a population x (exponential model) and the fact that, because of limited resources and inter-

individual competition, it cannot be higher than limit N which is called the carrying capacity. Its expression is 

recursive: 

xt+1 = r xt (1- xt/N) 

where r>0 is a constant parameter. Note that in this case the constrained set is K = [0;N]. As soon as r ≤ 4, the 
constraint f(K) ⊆ K is satisfied. Thus the model is viable – following the viability theory [6] definition – for any 
initial state x0. 

The steady state is reached at the equilibrium points x* = f(x*). If |f’(x*)| < 1, the equilibrium is stable. In the 
Verhulst model there are two equilibrium points, detailed in the following table: 

 x* f(x*) Stability 

Equilibrium 1 0 r Stable if r < 1 
Equilibrium 2 N(r-1)/r 2-r Stable if 1 < r < 3 

Table 1.  Steady states of the Verhulst model 
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Including the number of dead people in the model 

The Verhulst model will be extended knowing that the carrying capacity N=N0 concerns the overall number of 
casualties Ct=It+Dt. The worsening of the injuries and the death of some seriously injured people results in an 
increase of the number of casualties, which is proportional to the number of still alive injured people (since the state 
of the dead people can not worsen more). So in the proposed approach the Verhulst equation is modified as follows: 

Ct+1 = Ct + a It ( 1 - Ct/N0 ) 

where a>0 is a constant.  This equation is of type Ct+1 = f(Ct,It) with  

f(x,y) = x + ay( 1 – x/N0 ) and 0 ≤ y ≤ x ≤ N0 

The constraint Ct ≤ N0 imposes that a≤1. For the system viability the constrained set is 

K’ = { (x,y) ∈ [0,N0] × [0,N0] : y ≤ x } 

One can remark that f(x,y) ≤ g(x) =  -a/N0 x2 + (1+a) x. It’s derivative is g’(x)  = 1+a-2ax/n0  ≥ 0 for all x ∈ [0,N0]. 
So g’s upper bound is g(N0)=N0. That is why f(K’)⊆K’. 

This proposed model can be expressed as a function of Xt:  

Xt+1 = M Xt + Q(Xt) 

where M is a matrix and Q a quadratic function with parameters such that α + µ = a. α is the worsening rate and µ is 
the death rate. 
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Results 

An example is shown at figure 1. The initial population is N0=1000 people. At the initial state, there are 1000 injured 
and 5 dead people. The coefficient of injury worsening is α = 0.2 and the death rate is µ = 0.05. 

Steady state 

The equilibrium is obtained for It = 0 or It + Dt = N0. That means there are no (more) alive injured people. So to 
make the model more realistic the rates α and µ must decrease as the time increases, as a function of type :  α  = 
α0/(1+btk) and  µ = µ 0/(1+ btk). 

RESCUE MODELING 

Adding the rescuers’ effect in the model 

One can introduce a new internal variable δt which represents the number of rescued people at each time period.  It 
will increase the number of rescued casualties and decrease the number of unrescued ones: 

Rt+1 = Rt + δt 

It+t(with rescue) = It+1(without rescue) - δt 

δt should be proportional to Bt. with a parameter σ representing the number of casualties rescued per rescuer and per 
time unit. To satisfy the constraints (δt ≥ 0, It≥ 0, Ct≤ N0) the proposed model is (see fig. 2)  : 
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Figure 2.  Number of rescued at each time 
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by including this term in the previous model, we obtain the resulting system  

It+1 = (1+α)It – α It ( It + Dt + Rt )/N0 – σ Bt It / ( σ Bt + It ) 

Dt+1 = Dt + µ It – µ It ( It + Dt + Rt )/N0 

Rt+1 = Rt + σ Bt It / ( σ Bt + It ) 

Results 

In the shown example the number of rescuers was supposed to be constant. That means a team of brigades was sent 
at the beginning.  The last equation of the dynamical system is then : Bt+1 = Bt 

 

Figure 1.  Worsening of the non-rescued casualties 
state 

 

 

Figure 3.  Evolution of the number of casualties in the 
presence of rescuers 

The parameters used in figure 3 are : N0 = 1000 ; α = 0.015 ; µ = 0.007 ; σ = 0.01 ; there are 180 injured and 10 dead 
people at the initial state, and 50 rescuers are present. 

RISK ANALYSIS 

For decision making purpose, the objective is to forecast an evaluation of the casualties worsening risk after a future 
time, given the observations (the initial number of casualties). The risk value is the difference between overall 
number of casualties obtained with the model and the initial number of casualties : 

It + Dt + Rt – I0 – D0 

This risk is given in figure 4 as a function of the number of initially sent rescuers. The shown delay is 5 periods. The 
other parameters are those used in the previous paragraph. This curve answers to the question : “If (only) B rescuers 
are immediately sent, and if nothing else is done there until a certain delay (i.e. 50 minutes), what is the risk of 
increase of the number of casualties ?”. 

This curve shows an asymptotic behavior, meaning that it is not useful to send too much rescuers. It also provides 
bounds for the number of new casualties, that can be more easily used to solve the problem of planning and 
deployment of rescuers on a wide area. 

CONCLUSION 

We have proposed a mathematical model to compute the future evolution on the number of casualties in a disaster. It 
can be used as a module to compute the forecasted risk of injury worsening as a criterion, and implemented in 
emergency planning tasks for decision making support. 

The shown results are calculated on a validation example, but the model parameters can be adjusted from statistical 
data. This dynamical model can itself be refined. For example, constraints on the actual number of injured people 
could be introduced. To make this fully deterministic approach more realistic, one could consider that is describes 
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the expectation of a stochastic behavior ; this would allow to extract other characteristics of the risk (e.g.  the 
variance of the possible worsening of casualties). 

With such a dynamical system modeling of the casualties in a disaster, there are also perspectives to go further in the 
risk mitigation thanks to the Viability Theory [6], [7]. It allows to define for the decision maker some minimal 
requested boundaries that would insure for example the existence of a strategy enabling to rescue a controlled 
percentage of casualties. 

 

 

Figure 4.  Risk of casualties increase if there are not enough 
rescuers 
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