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ABSTRACT 

Source term estimation (STE) of hazardous material (HAZMAT) releases is 

critical for emergency response. Such problem is usually solved with the aid of 

atmospheric dispersion modelling and inversion algorithms accompanied with a 

variety of uncertainty, including uncertainty in atmospheric dispersion models, 

uncertainty in meteorological data, uncertainty in measurement process and 

uncertainty in inversion algorithms. Bayesian inference methods provide a unified 

framework for solving STE problem and quantifying the uncertainty at the same 

time. In this paper, three stochastic methods for STE, namely Markov chain 

Monte Carlo (MCMC), sequential Monte Carlo (SMC) and ensemble Kalman 

filter (EnKF), are compared in accuracy, time consumption as well as the 

quantification of uncertainty, based on which a kind of flip ambiguity 

phenomenon caused by various uncertainty in STE problems is pointed out. The 

advantage of non-Gaussian estimation methods like SMC is emphasized.  

Keywords 

Bayesian inference, emergency response, hazardous material releases, source term 
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INTRODUCTION 

The release of hazardous material (HAZMAT) is an enormous threat to public 

safety. The occurrence of these incidents can be due to various accidents in 

industries as well as the increasingly rampant terrorist acts. In this type of events, 

specific government agencies like office of emergency management are in charge 

of tracking and forecasting HAZMAT transport, as well as taking effective 

measures to mitigate damages, where accurate information about the source 

location and release rate plays an irreplaceable role. 

Source term estimation (STE) is the process of recovering the source parameters 

like location and release rate according to some measurement data, which can be 

integrated into information systems for crisis response and management as a 

function module to help enhance situation awareness and assessment of 
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HAZMAT releases. In addition to the accuracy of measurement concentration and 

meteorological data, another two key factors of the success of STE are the 

forward dispersion model and the back-calculation methods, to both of which a lot 

of research has been devoted. In most cases, these two factors are independent of 

each other and thus can be combined in different ways. Currently, there exist 

several types of back-calculation approaches to solve the STE problem, among 

which optimization methods and probabilistic methods are the most popular. 

Optimization methods use various optimization algorithms to minimize the 

difference between the output of forward model and the measurement data. 

Thomson et al. (2007) used simulated annealing algorithm with three different 

cost functions to locate a gas source. Zheng and Chen (2010) compared the 

pattern search method with a gradient-based algorithm and an intelligent 

optimization algorithm, achieving optimal solutions in a relatively shorter time. 

Probabilistic methods based on Bayesian inference treat the source parameters and 

measurement data as random variables and can incorporate the error of forward 

dispersion model and the noise of measurement data. The most widely used 

probabilistic approach is the Markov chain Monte Carlo (MCMC) method (Keats, 

Yee and Lien, 2007; Kim, Jang and Lee, 2011; Senocak, Hengartner, Short and 

Daniel, 2008). Recently, the sequential Monte Carlo (SMC) approach, also known 

as particle filter (PF), is used to solve the STE problem (Hofman, Šmídl and 

Pecha, 2013; Šmídl and Hofman, 2013). Another notable probabilistic method is 

the ensemble Kalman filter (EnKF) (Zhang, Su, Yuan, Chen and Huang, 2014). 

Details about the development of Bayesian state-estimation algorithms can be 

found in Ching, Beck and Porter (2006). 

The quantification of uncertainty can yield a deeper insight into the capabilities 

and limitations of the STE process. According to Rao (2005), uncertainty in 

atmospheric dispersion modelling is related to: (a) uncertainty in data and 

parameter including initial and boundary conditions; (b) model uncertainty caused 

by simplified treatment of complex physical or chemical processes and 

approximate numerical solutions; and (c) stochastic uncertainty resulting from the 

turbulent nature of the atmosphere as well as unpredictable human activities.  

In STE problems, another uncertainty, uncertainty in inversion algorithms caused 

by different assumptions during the modelling process and various parameter 

settings in the computational process, should also be considered. In this paper, 

three stochastic algorithms for STE, namely MCMC, SMC and EnKF, are 

compared in accuracy, time consumption as well as the quantification of 

uncertainty. The Bayesian formulation of the STE problem is given in a way 

where the three methods can be implemented under the same framework. The 

advantage of non-Gaussian estimation methods like SMC is emphasized, 

constituting a new trend in STE problem.  

THE BAYESIAN FORMULATION OF THE PROBLEM 

From a Bayesian perspective, both the source parameters and the measurement 

data are considered as random variables. Let (t) (t) (t)

1 2{ , , ... , }t

nX X XX  denote the 

n source parameters including location and release rate at time t, 
(t) (t) (t)

1 2{ , , ... , }t

kY Y YY  denote the measurement concentration at time t, and 

(t) (t) (t)

1 2{ , , ... , }t

kF F FF  denote the predicted concentration at time t through 

running a forward dispersion model where k is the number of gas sensors. 

According to Guo, Yang, Zhang, Weng and Fan (2009), if the measurement error 

and forward model error at any sensor at any time are assumed to be independent 

and satisfy the gaussian distribution with zero mean and a known standard 

deviation, the likelihood function can be written as 
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and the posterior distribution of source parameters can be written as 
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where 1 2{ , , ... , }mX X X X  and 1 2{ , , ... , }mY Y Y Y  denote the source 

parameter history and measurement data history respectively, 
(t) (t) (t)

,1 ,2 ,{ , , ... , }t

y y y y k  σ  and (t) (t) (t)

,1 ,2 ,{ , , ... , }t

f f f f k  σ  denote the standard 
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deviation of measurement error and forward model error at time t respectively. 

From a more general perspective, the discrete-time state space model of STE 

problem can then be expressed as 

1( , )

( , )

t t t

t

t t t

t

M

H





X X ν

Y X ω

 

where the vectors
t
ν and

t
ω

represent the system noise and the 

observation noise at time t 

respectively. In case of time-

invariant uncertain parameter 

estimation in this study, the 

forecast operator
tM  represents 

the variation of system parameters 

while the observation operator
tH   

includes the forward dispersion 

process and the measurement 

process. 

THE SYNTHETIC EXPERIMENT 

In common with much previous 

work (Thomson et al., 2007; 

Zheng and Chen, 2011), the 

Gaussian plume model was 

employed, which can be expressed as 

2 22
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Simulation parameters are set the same as those in Zheng and Chen (2011), where 

Q equals 10434.78 g/s. 

In our synthetic experiment, sensors were uniformly dispatched following a 5 5   

grid and the real source location (x, y) is (0, 0). The wind was along the positive 

direction of X-axis. All the source parameters and the wind field do not change 

with time. The experiment setup and concentration contours are shown in Figure 

1. 

Considering the existence of various uncertainty, measurement data at the 25 

sensors are generated by adding a maximum of 50% random noise to the output of 

the Gaussian plume model, namely, t
Y satisfies the uniform distribution U (0.5 t

F , 

1.5 t
F ). In this study, a flat prior on the location and strength of the source is 

assumed, namely the source location (x,y) satisfies the uniform distribution (U[-

10,60], U[-20,30]) and the strength Q satisfies the uniform distribution 

U[500,20000]. 

DESCRIPTION OF THE THREE STOCHASTIC METHODS 

The basic idea of the MCMC method is to generate a Markov chain whose 

stationary distribution is the posterior distribution of source parameters. The 

Metropolis-Hastings algorithm (Johannesson, Hanley and Nitao, 2004) was used 

to generate realizations from the posterior distribution ( | )p X Y . The starting value 

0X  is (50,-15, 1000), which means an initial release of 1000 g/s at (50,-15). The 

proposal distribution and the acceptance ratio are defined according to Wu, Yang, 

Zhang and Qiao (2013), which means the candidate realization  
1jZ   at (j+1) th 

iteration are generated by the distribution 2

1( , ) ( , )j j j jq Gau X Z X σ   and the 

acceptance ratio can be calculated by the following equation 
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The basic idea of SMC (Johannesson et al., 2004) is to fully take advantage of the 

sequential nature of the posterior distribution. The proposal distribution was taken 

equal to the prior distribution, the same as
1( , )j jq X Z , then the calculation of 

importance weights for time-invariant uncertain parameters can be expressed as 

 

Figure 1.  Schematics of the experiment setup  

and contours of the concentrations on the 

ground level 
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The EnKF method (Evensen, 2003) is a sequential data assimilation technique for 

nonlinear system models and observations. As is illustrated above, the STE 

problem was formulated into a state estimation problem of discrete-time 

dynamical random system. In order to compare the three algorithms in a fair 

manner, the forecast operator 
tM  representing the variation of system parameters 

was also chosen to be the same as 
1( , )j jq X Z  mentioned above. 

RESULTS AND DISCUSSION 

The posterior distribution of source parameters estimated by MCMC, SMC and 

EnKF is shown in Figure 2 and Figure 3. 

Since parameters like proposal distribution and measurement errors were all 

chosen to be the same for the above three methods, it makes sense to compare 

their performance horizontally. In order to acquire a more quantitative 

understanding of the performance and properties of the three methods, the 

estimation results and some key indexes are summarized in Table 1and Table 2 

respectively. 

From Figure 2-3 and Table 1, it can be seen that the estimation results of MCMC 

and SMC are very similar in accuracy and the quantification of uncertainty while 

the results of EnKF show a different pattern. 

Firstly, the EnKF method tends to overestimate the release rate, and has a larger 

variance on the downwind location x but a smaller variance on the cross wind 

location y than MCMC and SMC. Secondly, the posterior distribution of the cross 

wind location y estimated by MCMC and SMC is bimodal while EnKF results in 

a unimodal distribution. This is because that EnKF tend to fail to capture the non-

Gaussian features of the posterior (Mandel and Beezley, 2009), proving that the 

capacity for quantifying uncertainty in STE are not the same for algorithms based 

on different theories and assumptions. 

 

   

   
 

Figure 2.  Posterior distribution of source location estimated by MCMC, SMC and 

EnKF. 

   

Figure 3.  Posterior distribution of source strength estimated by MCMC, SMC and 

EnKF.  
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  MCMC SMC EnKF 
     

Location x 

(m) 

Mean -3.0 -3.0 1.2 

Std 1.0 1.5 4.3 

95% CIs [-4.9,-1.1] [-5.9,0.0] [-7.8,9.5] 
     

Location y 

(m) 

Mean -1.0 -1.4 -2.2 

Std 1.8 2.2 0.9 

95% CIs [-4.1,0.4] [-4.7,0.4] [-3.6,-0.5] 
     

Release rate 

(g/s) 

Mean 10755.7 10644.3 14079.1 

Std 786.1 996 1064.2 

95% CIs 
[9336.2, 

12322.8] 

[8822.3, 

12707.8] 

[12015.5, 

16195.2] 

Table 1.  Source term estimation results by the three stochastic algorithms based on 

20 repeated calculations 

 

 MCMC SMC EnKF 
    

Convergence step 17325 138 173 
    

Number of running the 

forward model per iteration 
1 100 101 

    

Particle number or ensemble 

size per iteration 
1 100 100 

    

Total running of the forward 

model until convergence 
17325 13800 17473 

 

Table 2.  Key indexes concerned with the performance and properties of the three 

stochastic algorithms based on 20 repeated calculations 

 

 

The appearance of bimodal posterior distribution is a kind of flip ambiguity which 

much research effort has been paid to in the Network Localization problem 

(Severi, Abreu, Destino and Dardari, 2009). The ambiguity phenomenon in STE 

problem can be caused by various uncertainty and remains to be further 

investigated. In this paper, the flip ambiguity is related to the axial symmetry of 

the experiment setup ( eg. the collinearity of sensors with relatively larger 

measured values and the axial symmetry of the concentration field) as well as the 

random noise added to the synthetic concentration data to incorporate the presence 

of various uncertainty. 

From Table 2, it can be seen that the total running of the forward model until 

convergence is almost the same for the three methods. But SMC and EnKF are not 

Markovian and inherently parallel. They run many forward models at the same 

time, and thus reach convergence in much less iteration steps and time compared 

with MCMC. This advantage is more obvious if the forward dispersion model is 

time-consuming, which is often the case.  

CONCLUSION 

With the presence of various uncertainty, the STE problem is very challenging. 

The quantification of uncertainty can yield a deeper insight into the capabilities 

and limitations of the STE process. 

In this study, three stochastic methods for STE are implemented under a unified 

Bayesian framework, and are compared in accuracy, time consumption as well as 

the quantification of uncertainty. The estimation results of MCMC and SMC are 

similar while EnKF tends to overestimate the release rate and fails to capture the 

non-Gaussian features of the posterior. SMC and EnKF are inherently parallel and 

cost much less time to convergence. With all these factors being considered, the 

non-Gaussian SMC method is regarded as a better choice for solving steady-state 

STE problems.  

Based on the analysis of the synthetic STE experiment, the flip ambiguity 

phenomenon is pointed out and considered to be caused by the axial symmetry of 

the experiment setup as well as the random noise added to the synthetic 

concentration data.  
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Notably, EnKF has its advantage in solving large-scale time-varying problems. In 

further research, multi-scale and non-stationary dispersion scenarios are to be 

investigated and different methods can be integrated to better quantify the 

uncertainty in STE problems. Analyzing the relative importance of various 

uncertainty is also a meaningful research topic. 
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