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ABSTRACT

The shared real-time information about natural disasters on social media platforms like Twitter and Facebook plays 
a critical role in informing volunteers, emergency managers, and response organizations. However, supervised 
learning models for monitoring disaster events require large amounts of annotated data, making them unrealistic for 
real-time use in disaster events. To address this challenge, we present a fine-grained disaster tweet classification 
model under the semi-supervised, few-shot learning setting where only a small number of annotated data is 
required. Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled 
data and large amounts of unlabeled data, mimicking the early stage of a disaster. Through integrating effective 
semi-supervised learning ideas and incorporating TextMixUp, CrisisMatch achieves performance improvement on 
two disaster datasets of 11.2% on average. Further analyses are also provided for the influence of the number of 
labeled data and out-of-domain results.
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1. INTRODUCTION

In times of natural disasters, individuals share content, facts, recommendations, and warnings about the disaster in 
real-time on social media platforms such as Twitter and Facebook. Such information is crucial to help volunteers, 
emergency managers, and response organizations become more situationally aware and efficient in their rescue 
activities (Varga et al. 2013; Vieweg et al. 2014).

Although existing works leverage such information to build models to monitor disaster events, many approaches 
require annotating large amounts of data when disasters happen, which are unrealistic due to the limited response 
time (C. Caragea et al. 2016; Chowdhury et al. 2020). Current semi-supervised approaches also over-assume the 
number of available labels (e.g., more than 50 labels per class) (Alam, Joty, et al. 2018b; P. Karisani and N. Karisani 
2021; Sirbu et al. 2022), which is hard to obtain when the number of classes is large. In addition, while the popular 
coarse, binary classification identifying whether a tweet is disaster-relevant can be useful, it is more informative to 
have fine-grained, multi-categorical classifications providing disaster information from different angles (Plotnick 
et al. 2015; Reuter et al. 2018; Imran, Ofli, et al. 2020; Alam, Qazi, et al. 2021).

To address the above challenges, we investigate the problem of fine-grained disaster tweet classification under the 
semi-supervised, few-shot learning setting. It aims to classify tweets during a disaster event into fine-grained classes 
of interest (e.g., injured or dead people, infrastructure and utility damage, caution and advice, rescue volunteering, 
or donation effort) (Alam, Qazi, et al. 2 021). In addition, in our few-shot setting, we only utilize five labeled data 
points per class, with the rest data being unlabeled and naturally imbalanced. This setting mimics the early stage of 
a disaster, which is also the most valuable time for rescue and escape.
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This paper first studies the effectiveness of various semi-supervised learning components on leveraging few labeled 
data and large amounts of unlabeled data for disaster tweet classification. Then, we extend the pseudo-labeling 
algorithm (Lee et al. 2013; B. Zhang et al. 2021) through entropy minimization, data augmentation, and consistency 
regularization. Particularly, we incorporate TextMixUp (H. Zhang et al. 2018; Chen et al. 2020), which encourages 
models to behave linearly among samples and avoid overfitting. Then, we propose CrisisMatch, by combining 
those effective components for fine-grained disaster tweet classification in the semi-supervised few-shot setting. 
Experimental results show that the proposed CrisisMatch achieves over 11.2% performance improvement on average 
on two disaster datasets. We also provide further analyses for CrisisMatch on the influence of the number of labeled 
data and out-of-domain results.

2. RELATED WORK

Semi-supervised learning. Semi-supervised learning is developed to alleviate the reliance on labeled data by 
leveraging unlabeled data to train more robust models (Lee et al. 2013; Berthelot et al. 2019; Xie et al. 2020; 
B. Zhang et al. 2021). Self-training adopts the idea of using the output probability of the model as a soft label 
for unlabeled data (Scudder 1965; McLachlan 1975; Lee et al. 2013; Xie et al. 2020). Pseudo-labeling modifies 
self-training by using hard labels, instead of soft labels, and confidence thresholding to reduce confirmation bias and 
select high-quality pseudo-labels for training (Lee et al. 2013; B. Zhang et al. 2021). Mean Teacher (Tarvainen and 
Valpola 2017) proposes to use the exponential moving average of model weights for label predictions on unlabeled 
data. MixMatch (Berthelot et al. 2019) utilizes sharpening to encourage low-entropy prediction for unlabeled data 
and uses MixUp (H. Zhang et al. 2018) to mix labeled and unlabeled data. MixText (Chen et al. 2020) adapts 
MixUp to text settings by interpolating hidden representations of texts.

Disaster tweet classification. Disaster tweet classification has made huge progress in recent years to improve crisis 
relief operations. (Imran, Elbassuoni, et al. 2013; Imran, Castillo, et al. 2015) proposed to classify disaster tweets to 
obtain useful information for disaster understanding and rescue. (Nguyen et al. 2017) introduced Convolutional 
Neural Networks (CNNs) to classify informative disaster-related tweets. (Kruspe et al. 2019) studied the supervised 
few-shot learning setting, where only a few labeled data are used for training a disaster tweet classifier. (Li, 
D. Caragea, and C. Caragea 2021) combined self-training with CNN and BERT pre-trained language models to 
improve the performance of classifying disaster tweets where only unlabeled data is available. Other works (Alam, 
Joty, et al. 2018a; Mazloom et al. 2019; Li, D. Caragea, C. Caragea, and Herndon 2018) explored unsupervised 
domain adaptation in which only unlabeled data is available for the current crisis event while labeled data is available 
from previous disaster events. However, most prior works either focus on coarse, binary classification or assume 
that many labeled data is available. In contrast, this work studies fine-grained disaster tweet classification under the 
few-shot setting, which we believe can benefit the early stage of disaster analysis and rescue.

3. METHOD

This section first reviews several classical semi-supervised learning ideas and components, including self-training, 
entropy minimization, and consistency regularization, then describes TextMixUp and our CrisisMatch algorithm for 
the task of fine-grained disaster tweet classification in the few-shot setting.

3.1 Self-Training and Entropy Minimization

In the semi-supervised few-shot learning setting, there are usually only a few labeled data but a large amount of 
unlabeled data. Self-training takes advantage of unlabeled data by using the model itself to infer predictions on 
unlabeled data, and then utilizing these predictions as pseudo-labels for training (Scudder 1965; McLachlan 1975; 
Lee et al. 2013; Xie et al. 2020). However, this may result in the issue of confirmation b ias: If these pseudo-labels 
are incorrect and the model is trained on them, the model can become worse and worse, continually confirming its 
own incorrect bias. A common strategy to alleviate this problem is to use a threshold to select only pseudo-labels 
whose largest class probability surpasses the threshold.

Besides, a basic assumption in many semi-supervised learning methods is that data in the same class are clustered 
together and thus a good classifier’s decision boundary between classes should not pass through high-density 
regions of the data manifold. Entropy minimization achieves this by encouraging the model to produce low-entropy 
predictions on unlabeled data (Grandvalet and Bengio 2004; Miyato et al. 2018). This is because the model will by 
necessity output high-entropy predictions for some samples if the decision boundary falls in high-density regions. 
Here we introduce two ways to implement entropy minimization: Pseudo-labeling and Sharpening.
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Pseudo-Labeling (Lee et al. 2013; B. Zhang et al. 2021) uses hard (i.e., one-hot) labels from high-confidence
predictions on unlabeled data as the targets for training, which implicitly enforces the model to output low-entropy
predictions. Formally, pseudo-labeling minimizes the following loss function:

1
`𝐵

`𝐵∑︁
𝑏=1

1(max(𝑝𝑚 (𝑦 |�̂�𝑏)) > 𝜏)𝐿 (𝑞𝑚 (𝑦 |�̂�𝑏), 𝑝𝑚 (𝑦 |�̂�𝑏)) (1)

where ` is the ratio of unlabeled data to labeled data, 𝐵 is the batch size of labeled data, �̂�𝑏 is a stochastically data
augmentation function, 𝑢𝑏 represents an unlabeled sample, 𝑝𝑚 denotes model’s probability prediction, 𝐿 is L2 loss
or cross-entropy loss, 𝜏 is a fixed threshold and 𝑞𝑚 (𝑦 |�̂�𝑏) is the hard one-hot pseudo-label.

Sharpening in MixMatch (Berthelot et al. 2019) uses soft labels and explicitly decreases the entropy of predicted
label distribution on unlabeled data by adjusting all probabilities to the power of 1/𝑇 and normalizing:

Sharpen(𝑝𝑖 , 𝑇) =
𝑝

1
𝑇

𝑖∑𝐶
𝑗=1 𝑝

1
𝑇

𝑗

(2)

where 𝑇 is the temperature hyperparameter and 𝐶 is the number of total classes. Lowering the temperature
hyper-parameter 𝑇 encourages the model to produce low-entropy predictions. When 𝑇 → 0, the predicted label
becomes a one-hot hard label.

3.2 Data Augmentation and Consistency Regularization

Data augmentation is a common technique to alleviate overfitting and help regularize models, especially when
using smaller datasets. It artificially increases the amount of training data by generating perturbed inputs with
transformations that are assumed not to change original class semantics. For instance, synonym replacement,
random swap, random insertion and random deletion are convenient and easy data augmentations for text (Wei and
Zou 2019). More advanced techniques such as back-translation (Fadaee et al. 2017; Sugiyama and Yoshinaga 2019)
and paraphrasing (Kumar et al. 2019) are also proposed to generate more diversified augmented data but are more
costly and complicated to implement.

Consistency regularization leverages the idea that a classifier should have similar predictions for data before and
after augmentation (Bachman et al. 2014; Sajjadi et al. 2016). A straightforward implementation is to add the loss
term:

`𝐵∑︁
𝑏=1
| |𝑝𝑚 (𝑦 |�̂�𝑏) − 𝑝𝑚 (𝑦 |�̂�𝑏) | |22 (3)

Another implicit way is to use the average prediction of several different augmentations of an unlabeled sample as
the common pseudo-label of all augmented data (Berthelot et al. 2019). Formally,

𝑞𝑚 (𝑦 |�̂�𝑏) =
1
𝐾

𝐾∑︁
𝑘

𝑝𝑚 (𝑦 |�̂�𝑏,𝑘)) (4)

where 𝐾 is the number of augmentations, �̂�𝑏,𝑘 is the k-th augmented data, and 𝑞𝑚 (𝑦 |�̂�𝑏) is the common pseudo-label
for all the corresponding augmented unlabeled data.

3.3 MixUp and TextMixUp

MixUp is a technique proposed by (H. Zhang et al. 2018) that can regularize the model to behave linearly among
training samples and alleviate overfitting. The idea is to generate numerous new virtual training samples by linearly
mixing two randomly sampled input and their one-hot labels:

𝑥 = _𝑥𝑖 + (1 − _)𝑥 𝑗 (5)
�̃� = _𝑦𝑖 + (1 − _)𝑦 𝑗 (6)

However, applying MixUp directly on text input seems infeasible since the interpolation of discrete text tokens 
makes no sense.
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Algorithm 1 CrisisMatch algorithm.
1: Input: Labeled batch X = {(𝑥𝑏, 𝑦𝑏) : 𝑏 ∈ (1, 2, . . . , 𝐵)}, unlabeled batch U = {𝑢𝑏 : 𝑏 ∈ (1, 2, . . . , `𝐵)},

unsupervised loss weight 𝑤𝑢, confidence threshold 𝜏, number of augmentations 𝐾 .
2: Û = { }
3: for 𝑏 = 1 to 𝐵 do
4: 𝑥𝑏 = Aug(𝑥𝑏) {Data augmentation for labeled examples}
5: for 𝑘 = 1 to 𝐾 do
6: �̂�𝑏,𝑘 = Aug(𝑢𝑏) {Data augmentation for unlabeled examples}
7: end for
8: 𝑞𝑏 = 1

𝐾

∑
𝑘 𝑝𝑚 (𝑦 | �̂�𝑏,𝑘) {Compute average prediction across different augmentations of 𝑢𝑏 as guessed

probability distribution target for all �̂�𝑏,𝑘}
9: if max(𝑞𝑏) ≥ 𝜏 then

10: 𝑞𝑏 = arg max(𝑞𝑏) {Compute one-hot guessed labels from high-confidence predictions}
11: Û ← (�̂�𝑏,𝑘 , 𝑞𝑏) {Use guessed labels as training targets for augmented unlabeled examples}
12: end if
13: end for
14: X̂ =

(
(𝑥𝑏, 𝑦𝑏); 𝑏 ∈ (1, . . . , 𝐵)

)
{Augmented labeled examples and their labels}

15: W = Shuffle
(
Concat(X̂, Û))

)
{Shuffle all labeled and unlabeled data}

16: X̃ =
(
TextMixUp(X̂𝑖 ,W𝑖); 𝑖 ∈ (1, . . . , |X̂ |)

)
{Apply TextMixUp to labeled data and entries fromW}

17: Ũ =
(
TextMixUp(Û𝑖 ,W𝑖+| X̂ | ); 𝑖 ∈ (1, . . . , |Û |)

)
{Apply TextMixUp to unlabeled data and the rest ofW}

18: L𝑥 = 1
| X̃ |

∑
�̃�, �̃�∈X̃ 𝐻 ( �̃�, 𝑝𝑚 (𝑦 | 𝑥)) {Compute loss for labeled data}

19: L𝑢 = 1
| Ũ |

∑
�̃�,�̃�∈Ũ ∥𝑞 − 𝑝𝑚 (𝑦 | �̃�)∥22 {Compute loss for unlabeled data}

20: Return: L𝑥 + 𝑤𝑢L𝑢

A more practical method is to interpolate hidden representations of texts at a certain layer and use the mixed
representation for future layer and model prediction (Verma et al. 2019; Chen et al. 2020):

ℎ̃𝑚 = _ℎ𝑖𝑚 + (1 − _)ℎ
𝑗
𝑚 (7)

ℎ̃𝑙 = 𝑔𝑙 ( ℎ̃𝑙−1), 𝑙 ∈ [𝑚 + 1, 𝐿] (8)

where ℎ𝑖𝑚 are the hidden representation of 𝑚-th layer for sentence 𝑖, 𝑔𝑙 (·) is the encoder function.

We refer to the above method as TextMixUp and it has the potential to create many more virtual training samples 
since it can interpolate representation at any layer of the encoder instead of just the input samples in the original 
MixUp.

3.4 Our Algorithm: CrisisMatch

In this section, we introduce our algorithm CrisisMatch, which incorporates the components and ideas described 
above for the task of semi-supervised few-shot disaster tweet classification. The complete algorithm for CrisisMatch 
is presented in Algorithm 1.

Given a labeled batch X = {(𝑥𝑏, 𝑦𝑏) : 𝑏 ∈ (1, 2, . . . , 𝐵)} and a unlabeled batch U = {𝑢𝑏 : 𝑏 ∈ (1, 2, . . . , `𝐵)}. 
We first apply data augmentation to both labeled and unlabeled d ata. Specifically, we generate one augmented 
labeled sample 𝑥𝑏 and 𝐾 augmented unlabeled samples �̂�𝑏,𝑘 (algorithm 1, line 4, 6). Then we implicitly enforce 
consistency regularization by using the average prediction across different augmentation of 𝑢 𝑏 as the guessed 
probability distribution target for all 𝐾 augmented unlabeled samples �̂�𝑏,𝑘 (algorithm 1, line 8).

To encourage entropy minimization, we use hard pseudo-labeling by computing one-hot pseudo-labels from 
unlabeled augmented data that receive high-confidence predictions (algorithm 1, line 1 0). TextMixUp is then 
applied on shuffled labeled and unlabeled data to further regularize the model to behave linearly between samples 
and effectively leverage limited labeled data (algorithm 1, line 1 6). Lastly, we compute cross-entropy loss for 
labeled data and compute 𝐿2 loss for unlabeled data since 𝐿2 loss is bounded for probabilities and less sensitive to 
wrong predictions of unlabeled data (algorithm 1, line 18, 19).

Our algorithm CrisisMatch differs from MixMatch(Berthelot et al. 2019) mainly as follows: CrisissMatch uses 
hard pseudo-labeling for entropy minimization instead of sharpening in MixMatch. We empirically found that 
hard-pseudo-labeling achieves better results than sharpening on both disaster datasets, as shown in Section 4.5 and
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Table 6. Besides, MixMatch uses all sharpened guessed labels on unlabeled for training, while CrisisMatch only
selects high-confidence predictions as pseudo-labels for training. We argue that not all guessed labels on unlabeled
data should be used since many of them may be incorrect, especially in the few-shot setting, and degenerate model
performance. Lastly, CrisisMatch leverages TextMixUp rather than MixUp since TextMixUp can interpolate text
hidden representations in any layer of encoder while MixUp only interpolates in input space and is not feasible for
interpolating discrete text tokens.

4 EXPERIMENTS

4.1 Datasets

To evaluate the performance of our proposed methods and baseline methods for fine-grained disaster tweet
classification, we use three datasets sampled and processed from HumAID((Alam, Qazi, et al. 2021): 1) Earthquake;
2) Wildfires; 3) Floods. We use Earthquake and Wildfires datasets for in-domain evaluation and Floods dataset for
out-of-domain evaluation.

These datasets comprise tweets collected in natural disasters that occurred between 2016 and 2019, such as the
2018 California Wildfires and the 2019 Pakistan Earthquake. Originally, there are 10 classes for each disaster
type. However, some classes have less than 100 data and even less than 10 data after splitting, and are difficult for
effective evaluation. Therefore, we discard those classes with less than 100 data and use the 7-class version of the
datasets for a more convincing evaluation. Table 1 shows all labels and class-wise distributions of the datasets used
in our experiments. Table 2 shows the data splits for each used disaster dataset. We will release our sampled and
processed datasets to make them convenient to use for future researchers.

Labels Wildfires Earthquake Floods

caution and advice 245 629 246
infrastructure and utility damage 673 728 453
injured or dead people 1946 1489 409
not humanitarian 1397 498 865
other relevant information 1349 707 1284
rescue volunteering or donation effort 2349 2049 5401
sympathy and support 633 2520 1040

total 8592 8620 9698

Table 1. Labels distribution for each dataset.

Datasets Size Train(80%) Dev(10%) Test(10%)

Wildfires 8592 6874 859 859
Earthquake 8620 6896 862 862
Floods 9698 7758 970 970

Table 2. Data splits for each disaster dataset.

4.2 Evaluation Setting

We use accuracy and macro-F1 as our evaluation metrics. Accuracy is used to measure the overall performance of 
different approaches on all testing data and macro-F1 is used because it takes class imbalance setting into account 
and measures the average performance of all classes. All methods are evaluated on the 5-shot setting in default: 
only 5 labeled data are randomly sampled from the training set and used, and the rest of the training data are treated 
as unlabeled data. We report accuracy and macro-F1 averaged across three runs with the same three random seeds 
for all methods.

4.3 Experimental Setup

To test the effectiveness of the proposed semi-supervised learning methods and components discussed in Section 
3, we perform experiments for the following methods: 1) Supervised Baseline: supervised baseline that uses
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the pre-trained BERT-base-uncased model with one classification layer added and fine-tuned only on labeled
data for our classification task. For a fair comparison, all methods used the same model architecture with this
supervised baseline. 2) PSL: plain pseudo-labeling that uses not only labeled data but also unlabeled data with
high-confidence predictions and their hard pseudo-labels for training; 3) PSL++: add data augmentations and
consistency regularization to PSL; 4) TextMixUp: apply TextMixUp introduced in Section 3 to the supervised
baseline; 5) CrisisMatch: our proposed algorithm, as described in Section 3. Note that Supervised Baseline and
TextMixUp use only labeled data (e.g., 5 labeled data per class in default) and other approaches utilize both labeled
data and unlabeled data.

All methods use the same model architecture BERT-base-uncased model and hyper-parameters in default. We set
batch size as 32, learning rate as 2e-5, and use AdamW as optimizer. The maximum sequence length is 64. _ in
TextMixUp are sampled from the Beta distribution with sampling hyper-parameter 𝛼 = 0.75. The weight of the
unlabeled loss is searched among {0.1, 0.5, 1, 5, 10, 50, 100} and set to 10 in default. We adopt linear ramps-up
strategy for the unlabeled loss weight and set ramps-up length as 1000 iterations. Confidence threshold 𝜏 is set to
0.75 and sharpening temperature 𝑇 is set to 0.5. We use synonym replacement and random swap as augmentation
methods and set 𝐾 , the number of augmentations for unlabeled samples, to 2.

4.4 Main Results

Datasets Wildfires Earthquake

Methods Accuracy Macro-F1 Accuracy Macro-F1

Supervised Baseline 53.9 ± 1.3 44.2 ± 1.8 51.1 ± 2.0 41.4 ± 1.9

PSL 59.3 ± 0.5 42.2 ± 2.4 57.5 ± 4.9 39.0 ± 3.4
PSL++ 60.1 ± 5.3 46.8 ± 2.5 58.2 ± 1.7 41.8 ± 3.6
TextMixUp 56.0 ± 1.7 46.2 ± 1.6 58.1 ± 5.5 46.5 ± 5.9
CrisisMatch 63.4 ± 1.1 51.5 ± 0.9 63.0 ± 6.1 51.3 ± 5.2

Table 3. Main results: comparison of all methods on Earthquake and Wildfires datasets. 5 labeled data per class
are used for all methods. Methods other than Supervised Baseline and TextMixUp leverages unlabeled data from
the rest of training set. Results are averaged across three different runs.

In Table 3, we summarize and compare the results of all methods in Earthquake and Wildfires d atasets. We provide 
detailed analyses and discuss our findings.

Leveraging unlabeled data achieves significantly better accuracy performance with limited labeled d ata. As 
shown in Table 3, methods that leveraged unlabeled data, including PSL, PSL++ and CrisisMatch, significantly 
outperform the supervised baseline, by at least 5.4% accuracy on the Wildfires dataset and 6.4% accuracy on 
Earthquake dataset. In addition, CrisisMatch surpasses the supervised baselines by 9.5% and 12.9% accuracy 
on Earthquake and Wildfires d atasets. This demonstrates that unlabeled data can be effectively used to  boost 
performance when limited labeled data is available and thus can alleviate reliance on labeled data.

Data augmentation and consistency regularization improve the performance of pseudo-labeling. We compare 
PSL with PSL++. PSL++ boosts the performance of PSL by 0.8% accuracy and 4.6% macro F1 on Wildfires dataset 
and 0.7% accuracy and 2.8% macro F1 on Earthquake dataset, justifying the effectiveness of data augmentation and 
consistency regularization on regularizing the model.

TextMixUp boosts the performance of the supervised baseline. Compared with the supervised baseline, 
TextMixUP increases 2.1% accuracy, 2% macro F1 on the Wildfire dataset, and 7% accuracy, 5.1% F1 on the 
Wildfires d ataset. This attests that artificially generated mixed samples by TextMixUp alleviate overfitting and 
regularize the model to perform linearly between data.

CrisisMatch achieves the best performance for fine-grained crisis tweet classification ta sk. The proposed 
CrisisMatch reaches the best performance of 63.4% accuracy and 51.5% F1 on Wildfires datasets, which obtains
+9.5% accuracy and +7.3% F1 huge boosts than the supervised baseline. On the Earthquake dataset, CrisisMatch 
surpasses the supervised baseline by a large margin of 12.9% accuracy and 9.9% F1. Besides, CrisisMatch 
consistently performs better than TextMixMatch. These results demonstrate that our proposed CrisisMatch 
effectively incorporates different ideas and components to handle the fine-grained crisis tweet classification with 
limited unlabeled data.
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4.5 Other Analysis

Influence of number of labeled data

We evaluate our baseline and proposed method using accuracy and macro-F1 with a varying number of labeled
data from 1 to 50. As shown in Table 4 and Figure 1, CrisisMatch consistently obtains better accuracy than the
supervised baseline in different settings, and also improves macro-F1 in most settings. As the number of labeled data
increases, both the CrisisMatch and the supervised baseline achieve better performance in accuracy and macro-F1.
For instance, CrisisMatch increases accuracy from 40.7% to 72.5% when the given number of labeled data per class
is improved from 1 to 50. In general, the gap between CrisisMatch and the supervised baseline shrinks and both
methods become more robust when more labeled data is provided, which we believe is because the supervision
signal becomes sufficient.

Dataset: Wildfires

Accuracy 1 3 5 10 20 50

Supervised Baseline 36.8 ± 5.0 43.9 ± 4.5 53.9 ± 1.3 59.5 ± 2.5 64.1 ± 1.1 70.9 ± 1.0
CrisisMatch 40.7 ± 5.3 52.5 ± 6.9 63.4 ± 1.1 66.4 ± 1.2 68.3 ± 1.8 72.5 ± 0.3

Macro-F1 1 3 5 10 20 50

Supervised Baseline 28.3 ± 2.9 35.5 ± 3.7 44.2 ± 1.8 50.2 ± 2.3 54.1 ± 1.3 61.4 ± 1.2
CrisisMatch 31.4 ± 3.1 39.3 ± 2.9 51.5 ± 0.9 52.9 ± 2.2 56.2 ± 1.5 62.1 ± 1.7

Dataset: Earthquake

Accuracy 1 3 5 10 20 50

Supervised Baseline 34.9 ± 3.0 45.0 ± 4.0 51.1 ± 2.0 63.3 ± 3.5 70.7 ± 1.5 77.5 ± 0.4
CrisisMatch 43.5 ± 4.4 49.4 ± 4.0 63.0 ± 6.1 74.7 ± 1.2 77.8 ± 0.9 78.9 ± 0.4

Macro-F1 1 3 5 10 20 50

Supervised Baseline 25.5 ± 3.7 36.5 ± 2.6 41.4 ± 1.9 51.9 ± 2.3 59.2 ± 1.5 65.7 ± 0.4
CrisisMatch 25.8 ± 5.0 38.4 ± 3.2 51.3 ± 5.2 60.8 ± 0.7 63.1 ± 0.7 65.5 ± 0.1

Table 4. Influence of number of labeled data. Supervised baseline only uses labeled data while CrisisMatch utilizes
unlabeled data from the rest of training set.

Figure 1. Performance with varying number of labeled data per class.

Out-of-Domain Results

WiP Paper – Social Media for Crisis Management
Proceedings of the 20th ISCRAM Conference – Omaha, Nebraska, USA May 2023

J. Radianti, I. Dokas, N. LaLone, D. Khazanchi, eds. 391 of 1084



Peng et al. CrisisMatch

Source: Earthquake, Target: Floods

Acc/Macro-F1 5 10 20

Supervised Baseline 47.3 ± 7.1 31.2 ± 5.1 58.9 ± 6.4 39.8 ± 2.3 64.3 ± 3.6 45.9 ± 4.2
CrisisMatch 52.9 ± 13.1 32.6 ± 7.0 66.9 ± 2.1 45.0 ± 0.5 67.9 ± 0.8 47.8 ± 1.0

Source: Wildfires, Target: Floods

Acc/Macro-F1 5 10 20

Supervised Baseline 57.7 ± 3.4 34.7 ± 1.5 61.0 ± 0.3 40.7 ± 3.3 65.9 ± 0.6 46.4 ± 2.0
CrisisMatch 56.4 ± 2.8 37.6 ± 1.9 66.5 ± 3.7 44.7 ± 3.3 70.6 ± 0.1 49.3 ± 2.9

Table 5. Out-of-domain results.

We investigate the performance of our model on data from out-of-domain (i.e., the distribution of testing data is
different from the distribution of training data). Specifically, we use the Earthquake or Wildfires as training data,
with each class having 5, 10, or 20 labeled data, and test the model on the Floods dataset. As shown in Table 5, our
proposed CrisisMatch generally increases both accuracy and macro-F1 over the supervised baseline. For instance,
given 10 labeled data per class on the Earthquake dataset, CrisisMatch outperforms the supervised baseline by 8%
accuracy and 5.2% macro-F1 score. This observation confirms the robustness of our proposed CrisisMatch on
out-of-domain data.

Entropy minimization: sharpening vs. hard pseudo-labeling.

We experimented with two different approaches to minimize entropy. CrisisMatch with hard pseudo-labeling
empirically performs slightly better than sharpening with soft labels. For instance, compared to CrisisMatch with
hard pseudo-labeling, CrisisMatch with sharpening decreases the performance by 2.8% macro-F1 on Wildfires and
3.5% accuracy on Earthquake dataset. These results show that hard pseudo-labeling is a more effective method in
entropy minimization for our fine-grained crisis tweet classification task.

Datasets Wildfires Earthquake

Methods Accuracy Macro-F1 Accuracy Macro-F1

Sharpening 62.0 ± 7.5 48.5 ± 5.4 59.9 ± 3.1 47.5 ± 3.2
Hard pseudo-labeling 63.0 ± 6.1 51.3 ± 5.2 63.4 ± 1.1 51.5 ± 0.9

Table 6. Entropy minimization: sharpening vs. hard pseudo-labeling.

4.6 Ablation Study

Since CrisisMatch comprises various existing mechanisms, we conduct extensive ablation studies to show the
effectiveness of each component.

Methods Accuracy Macro-F1

CrisisMatch 63.4 ± 1.1 51.5 ± 0.9

- Unlabeled Data 57.6 ± 3.6 47.4 ± 3.2
- Consistency Regularization 62.7 ± 3.0 49.3 ± 4.2
- TextMixUp 59.3 ± 2.1 48.6 ± 1.4
- All (Supervised Baseline) 53.9 ± 1.3 44.2 ± 1.8

Table 7. Ablation study on Wildfires dataset with 5 labeled data per class.

As illustrated in Table 7, we empirically study the performance of CrisisMatch after removing each of its components 
at a time. One may notice that the performance drops after stripping each part, demonstrating that all components 
contribute to CrisisMatch to achieve better results. Furthermore, removing unlabeled data reduces the performance 
most, suggesting that CrisisMatch can effectively l everage unlabeled data to t rain a  better m odel. Removing 
TextMixUp results in the second-largest decrease in performance. This implies the effectiveness of 
TextMixUp
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in providing data augmentation and regularizing the model. In addition, the decrease resulting from removing
consistency regularization illustrates the importance of encouraging the model to perform consistently for different
augmentations of data.

5 CONCLUSION AND FUTURE WORK

In this paper, we studied several methods on how to effectively leverage unlabeled data for disaster tweet classification
in the semi-supervised few-shot setting, where there are only a few labeled data per class but large amounts of
unlabeled data are available. Concretely, we introduced different variants of pseudo-labeling by introducing data
augmentation, entropy minimization and consistency regularization. Besides, we studied TextMixUp and proposed
our algorithm CrisisMatch, which further integrated TextMixUp into pseudo-labeling. Experimental results show
that CrisisMatch can surpass the supervised baseline by a significant margin and demonstrate its effectiveness in
utilizing unlabeled data. In the future, we plan to deal with the existing data-imbalanced issue and explore adaptive
thresholds for different classes on a wider range of datasets and tasks.
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