|   | 
Details
   web
Records
Author Patrick Lieser; Julian Zobel; Björn Richerzhagen; Ralf Steinmetz
Title Simulation Platform for Unmanned Aerial Systems in Emergency Ad Hoc Networks Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Simulation Platform; Unmanned Aerial Vehicles; Delay Tolerant Networks; Emergency Ad Hoc Networks
Abstract (up)
Address Technical University Darmstadt, Germany
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T1- Analytical Modeling and Simulation Expedition Conference
Notes Approved no
Call Number Serial 1726
Share this record to Facebook
 

 
Author Toshihiro Osaragi; Koji Ogino; Noriaki Hirokawa; Takuya Oki
Title Severity of Crowding at Evacuation Shelters after a Major Earthquake Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 22-43
Keywords large earthquake; evacuation shelter; building damage; water-supply failure; simulation; evacuation behavior
Abstract (up) A number of residents are presumed to evacuate to shelters after a large earthquake. However, the congestion of evacuation shelters has not been enough discussed. In this paper, we propose an evacuation behavior model, which includes sub-models on building damage, water-supply failure, power failure, fire damage, and elevator stall. Using the model estimated using the survey data of the past earthquakes, we discuss the congestion of evacuation shelters under the assumption of Tokyo Bay northern earthquake. Finally, we discuss improvement of water pipes for earthquake resistance to reduce the congestion degree of evacuation shelters, which varies according to regional vulnerability.
Address Tokyo Institute of Technology
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2397
Share this record to Facebook
 

 
Author Cornelius Dold; Christopher Munschauer; Ompe Aimé Mudimu
Title Real-Life Exercises as a Tool in Security Research and Civil Protection – Options for Data Collections Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 244-250
Keywords Real-Life Exercises; Data Collection; Emergency Response; Civil Protection; Large-Scale Exercises
Abstract (up) A real-life exercise is a scientific method used by the TH Köln to generate data sets of new technologies and operational concepts derived from research projects. The Institute of Rescue Engineering and Civil Protection (German acronym: IRG) uses a real-time locating system (RTLS), video surveillance, observers and a mass casualty incident benchmark to generate motion profiles, information flows and information on the quality of care. In this practitioner paper these different methods will be discussed and the combination of different data is described. Furthermore, an outlook is given on the extent to which the method will be improved and expand-ed in the future. Concluding it can be said that the combination of all collected data is essential for the evalua-tion of a real-life exercise in security research or civil protection.
Address TH Köln – University of Applied Sciences, Cologne; TH Köln – University of Applied Sciences, Cologne; TH Köln – University of Applied Sciences, Cologne
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-24 ISBN 2411-3410 Medium
Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes cornelius.dold@th-koeln.de Approved no
Call Number Serial 2225
Share this record to Facebook
 

 
Author Laura Szczyrba; Yang Zhang; Duygu Pamukcu; Derya Ipek Eroglu
Title A Machine Learning Method to Quantify the Role of Vulnerability in Hurricane Damage Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 179-187
Keywords Vulnerability, Impact, Damage, Machine Learning, Hurricane María.
Abstract (up) Accurate pre-disaster damage predictions and post-disaster damage assessments are challenging because of the complicated interrelationships between multiple damage drivers, including various natural hazards, as well as antecedent infrastructure quality and demographic characteristics. Ensemble decision trees, a family of machine learning algorithms, are well suited to quantify the role of social vulnerability in disaster impacts because they provide interpretable measures of variable importance for predictions. Our research explores the utility of an ensemble decision tree algorithm, Random Forest Regression, for quantifying the role of vulnerability with a case study of Hurricane Mar\'ia. The contributing predictive power of eight drivers of structural damage was calculated as the decrease in model mean squared error. A measure of social vulnerability was found to be the model's leading predictor of damage patterns. An additional algorithm, other methods of quantifying variable importance, and future work are discussed.
Address Virginia Tech; Virginia Tech; Virginia Tech; Virginia Tech
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-17 ISBN 2411-3403 Medium
Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes lszczyrba@vt.edu Approved no
Call Number Serial 2218
Share this record to Facebook
 

 
Author Alexander Gabriel; Babette Tecklenburg; Yann Guillouet; Frank Sill Torres
Title Threat analysis of offshore wind farms by Bayesian networks – a new modeling approach Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 174-185
Keywords Threat analysis, Bayesian networks, process modeling, Critical infrastructurs
Abstract (up) As a result of the ongoing commitment to climate protection in more and more countries and the corresponding expansion of renewable energies, the importance of renewables for the security of electricity supply is also increasing. Wind energy generated in offshore wind farms already accounts for a significant share of the energy mix and will continue to grow in the future. Therefore, approaches and models for security assessment and protection against threats are also needed for these infrastructures. Due to the special characteristics and geographical location of offshore wind farms, they are confronted with particular challenges. In this context, this contribution outlines how an approach for threat analysis of offshore wind farms is to be developed within the framework of the new research project “ARROWS” of the German Aerospace Center. The authors first explain the structure of offshore wind farms and then present a possible modeling approach using Qualitative function models and Bayesian networks.
Address German Aerospace Center – Institute for the Protection of Maritime Infrastructures; German Aerospace Center – Institute for the Protection of Maritime Infrastructures; German Aerospace Center – Institute for the Protection of Maritime Infrastructures; Ger
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes Alexander.Gabriel@dlr.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2323
Share this record to Facebook
 

 
Author Christopher W. Zobel; Milad Baghersad; Yang Zhang
Title Calling 311: evaluating the performance of municipal services after disasters Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 164-172
Keywords Resilience; Municipal Departments; 311 Service Center; Disaster; Critical Infrastructure
Abstract (up) As part of a movement towards enabling smart cities, a growing number of urban areas in the USA, such as New York City, Boston, and Houston, have established 311 call centers to receive service requests from their citizens through a variety of platforms. In this paper, for the first time, we propose to leverage the large amount of data provided by these non-emergency service centers to help characterize their operational performance in the context of a natural disaster event. We subsequently develop a metric based on the number of open service requests, which can serve as the basis for comparing the relative performance of different departments across different disasters and in different geographic locations within a given urban area. We then test the applicability and usefulness of the approach using service request data collected from New York City's 311 service center.
Address Virginia Tech
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response AndManagement
Notes Approved no
Call Number Serial 2008
Share this record to Facebook
 

 
Author Charles Bailly; Carole Adam
Title An interactive simulation for testing communication strategies in bushfires Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 72-84
Keywords Agent-based modelling and simulation; communication; crisis management; GAMA platform; serious game
Abstract (up) Australia is frequently hit by bushfires. In 2009, the “Black Saturday” fires killed 173 people and burnt hectares of bush. As a result, a research commission was created to investigate, and concluded that several aspects could be improved, in particular better understanding of the population actual behaviour, and better communication with them. We argue that agent-based modelling and simulation is a great tool to test possible communication strategies, in order to deduce valuable insight for emergency managers before new fires happen. In this paper, we extend an existing agent-based model of the population behaviour in bushfires. Concretely, we added a communication model based in social sciences, and user interactivity with the model. We present the results of first experiments with dierent communication strategies, providing valuable insight for better communication with the population during such events. This model is still preliminary and will eventually be turned into a serious game.
Address Grenoble-INP, LIG, Grenoble, France; Univ. Grenoble-Alpes, LIG, F-38000 Grenoble, France
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2001
Share this record to Facebook
 

 
Author Victor A. Bañuls; Cristina López-Vargas; Fernando Tejedor; Murray Turoff; Miguel Ramirez de la Huerga
Title Validating Cross-Impact Analysis in Project Risk Management Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Scenarios; Cross-Impact Analysis (CIA); Interpretive Structural Modeling (ISM); Risk Events; Project Management
Abstract (up) Companies work increasingly more on projects as a means of executing organizational decisions. However, too many enterprise projects result in failure. Hence, firms should follow a risk management method that drives their projects toward success. Nevertheless, project managers often deal with risks intuitively. This is partly because they lack the proper means to correctly manage the underlying risks which affect the entire cycle of their projects. Therefore, one purpose is to identify the critical events that managers may encounter before the beginning of the project and during its development. In addition, we propose CIA-ISM to represent existing relationships between the unforeseen events in the project?s lifetime and their key performance indicators. This also predicts the influence of risks on project performance over time by means of scenarios. The tool proposed would thus help practitioners to manage enterprise projects risks in a more effective and proactive way. We have validated the predictive capability of the CIA-ISM model with 22 real projects. The results show a high level of predictive capability in terms of risk analysis and key performance indicators.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-8 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1338
Share this record to Facebook
 

 
Author Xiujuan Zhao; Jianguo Chen; Peng Du; Wei Xu; Ran Liu; Hongyong Yuan
Title Location-allocation model for earthquake shelter solved using MPSO algorithm Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Earthquake shelter location-allocation, evacuation time minimization, objective, MPSO
Abstract (up) Constructing shelters in suitable quantities, with adequate capacities and at the right locations is essential for evacuees under earthquake disasters. As one of the disaster management methods, constructing shelters can help to significantly reduce disruption and devastation to affected population. Mathematical models have been used to solve this problem allied with a heuristic optimization algorithm. The optimization of evacuation efficiency, as one of the most important objectives, has many expressive forms, such as minimizing evacuation distance and evacuation time. This paper proposes a new model that aims to minimize evacuation time with a new calculation method and to maximize total evacuees? comfort level. The modified particle swarm optimization (MPSO) algorithm is employed to solve the model and the result is compared with a model that calculated evacuation time differently and a model without distance constraint, respectively.
Address Tsinghua University, China, People's Republic of;Beijing Global Safety Technology Co., Ltd, China, People's Republic of;Beijng Normal University, China, People's Republic of
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T1- Analytical Modeling and Simulation Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)
Notes Approved no
Call Number Serial 1927
Share this record to Facebook
 

 
Author Pettersson, M.N.; Axelsson, J.; Svenson, P.; Johansson, A.
Title Towards a Risk Analysis Method for Systems of Systems: A Case Study on Wildfire Rescue Operations Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 530-545
Keywords Systems of Systems; Risk Analysis Methods, Case Study, Wildfire, STAMP. Crisis Management
Abstract (up) Crisis management (CM) is facing new challenges due to the increasing complexity of contemporary society. To mitigate a crisis, it is often necessary for a collection of independent systems, people, and organizations to cooperate. These collaborating entities constitute an interconnected socio-technical system of systems (SoS). An important question is how a CM SoS should be constructed to minimize the risk of failure and accurately handle a crisis. SoS pose new challenges in analysing risk during interactions. This paper investigates whether the risk analysis method STAMP (System-Theoretic Accident Model and Processes) is suitable for SoS, using a forest fire rescue operation case study. Results show characteristics of various risk sources and identify some SoS characteristics, such as dynamic structure and latent risks, that are not sufficiently handled in STAMP. The study further contributes to the body of knowledge by presenting potential directions for research on SoS risk assessment methods.
Address Mälardalen University; Research Institutes of Sweden
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes http://dx.doi.org/10.59297/SFUF2569 Approved no
Call Number ISCRAM @ idladmin @ Serial 2545
Share this record to Facebook
 

 
Author Flavio Dusse; Renato Novais; Manoel Mendonça
Title A Visual Analytics Based Model for Crisis Management Decision-Making Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 157-166
Keywords Crisis Management, Decision-Making, Visual Analytics, Model.
Abstract (up) Crisis Management (CM) refers to the ability to deal with crisis tasks in different phases and iterations. People working in a crisis are generally under pressure to make the right decision at the right time. They must process large amounts of data and assimilate the received information in an intuitive way. Visual Analytics (VA) is potentially useful to analyze and understand the huge amount of data in several areas including in a crisis. We propose a model based on VA to support decision-making in CM. The aim of the model is to help visualization designers to create effective VA interfaces, to help crisis managers to make quick and assertive decisions with them. In previous studies, we carried out a survey protocol with a multi-method approach to collect data on crisis related decision-making and analyze all these data qualitatively with formal techniques during the large events held in Brazil in recent years. In this work, we used our previous findings to develop the proposed model. We validated it using the focus group technique. With the new findings, we identified relevant insights on the use of VA for crisis management. We hope that, with these continuous cycles of validation and improvement, the agencies that manage crises might use our model as a reference for building more effective IT decision-making infrastructures based on VA.
Address Federal University of Bahia; Federal Institute of Bahia; Federal University of Bahia
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-15 ISBN 2411-3401 Medium
Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes dussebr@dcc.ufba.br Approved no
Call Number Serial 2216
Share this record to Facebook
 

 
Author Flavio Dusse; Renato Novais; Manoel Mendonça
Title Understanding the Main Themes Towards a Visual Analytics Based Model for Crisis Management Decision-Making Type Conference Article
Year 2019 Publication Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2019
Volume Issue Pages
Keywords Crisis Management, Decision-Making, Visual Analytics, Computational Model.
Abstract (up) Crisis Management (CM) refers to the ability to deal with crisis tasks in different phases and iterations. People working in a crisis are generally under stress to make the right decision at the right time. They have to process large amounts of data and to assimilate the received information in an intuitive and visual way. Visual Analytics (VA) is potentially useful to analyze and understand the huge amount of data in several areas including in a crisis. We designed a survey protocol to understand which themes influence visualizations to support CM. In previous work, we carried out systematic mapping studies, analysis of official documents, ethnographic studies, questionnaires during the large events held in Brazil in recent years. In this work, we interviewed eight CM specialists. We analyzed this data qualitatively with the coding technique. Then we evaluated the coding results with the focus group technique. With the results, we identified the relationships between the visual needs and other main themes of influence for CM. This thematic synthesis enabled us to build a draft model based on VA.

We hope that, after future cycles of validations and improvements, the agencies that manage crises might use this model as a reference in their activities of knowledge production and decision-making.
Address UFBA, Brazil;IFBA, Brazil
Corporate Author Thesis
Publisher Iscram Place of Publication Valencia, Spain Editor Franco, Z.; González, J.J.; Canós, J.H.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-09-10498-7 Medium
Track T1- Analytical Modeling and Simulation Expedition Conference 16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019)
Notes Approved no
Call Number Serial 1878
Share this record to Facebook
 

 
Author Restel, H.
Title SimulationOps – Towards a Simulation as-a-Service Platform for Resilient Societies Using a Cross-domain Data Mesh Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 575-585
Keywords Disaster Resilience; SimulationOps; Simulation Life Cycle; Design Science Research; Data Mesh
Abstract (up) Cross-domain simulations can be a feasible approach for enhancing disaster resilience as well as promoting resilient societies. This work-in-progress proposes a data-centric process model and software platform architecture called “SimulationOps” aimed at improving cross-domain collaboration between researchers (simulation analysts, simulation modelers) and stakeholders (disaster responders, decision makers) throughout the simulation life cycle for combined simulation artifacts. This way, stakeholders are supported in mitigating disasters, improving overall resilience by gained insights, and improvements in quality and velocity. Applying a four-cycle Design Science Research model to the simulation lifecycle, it combines ideas from modern and agile software engineering practices, simulation-as-a-service approach, and the Data Mesh approach. It combines the technical IT level with the organizational process level to smoothen the workflow for creating, running, and improving cross-domain computer simulation components for both producers as well as consumers of the simulation life cycle.
Address Fraunhofer FOKUS
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes http://dx.doi.org/10.59297/NUER9877 Approved no
Call Number ISCRAM @ idladmin @ Serial 2548
Share this record to Facebook
 

 
Author Yan Wang; John E. Taylor
Title Tracking urban resilience to disasters: a mobility network-based approach Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 97-109
Keywords Fisher information; human mobility; network analysis; Twitter; urban resilience
Abstract (up) Disaster resilience is gaining increasing attention from both industry and academia, but difficulties in operationalizing the concept remain, especially in the urban context. Currently, there is scant literature on measuring both spatial and temporal aspects of resilience empirically. We propose a bio-inspired quantitative framework to track urban resilience to disasters. This framework was built upon a daily human mobility network, which was generated by geolocations from a Twitter Streaming API. System-wide metrics were computed over time (i.e. pre-, during and post-disasters). Fisher information was further adopted to detect the perturbation and dynamics in the system. Specifically, we applied the proposed approach in a flood case in the metropolis of São Paulo. The proposed approach is efficient in uncovering the dynamics in human movements and the underlying spatial structure. It adds to our understanding of the resilience process in urban disasters.
Address Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech; School of Civil and Environmental Engineering, Georgia Tech
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2003
Share this record to Facebook
 

 
Author Michael Bartolacci; Stanko Dimitrov
Title A Network Interdiction Perspective for Providing Emergency Communications: An Analysis for Promoting Resiliency Subject to Resource Constraints and Security Concerns Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Communications; Network Interdiction Model
Abstract (up) Disasters, whether natural or manmade, and other types of emergencies create the need for immediate and secure communications between and among the affected populace, governmental agencies, non-governmental organizations (NGOs) and other types of emergency responders. It is through these communications that the affected populace is able to show resilient behavior, both psychologically and economically. A network interdiction model is proposed that can be utilized to create a more reliable design for such a communications network against the motives of would-be attackers whose aim it is to disrupt emergency communications and inflict damage on the affected populace. The contribution of this work is the application of the network interdiction modeling framework to an emergency communication scenario.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3402 ISBN 978-84-608-7984-23 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1342
Share this record to Facebook
 

 
Author Duygu Pamukcu; Christopher W. Zobel; Andrew Arnette
Title Characterizing Social Community Structures in Emergency Shelter Planning Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 228-236
Keywords Evacuation Planning; Sheltering; Simulation; Social Network; Group Behavior
Abstract (up) During emergencies, it is often necessary to evacuate vulnerable people to safer places to reduce loss of lives and cope with human suffering. Shelters are publically available places to evacuate, especially for people who do not have any other choices. This paper overviews emergency shelter planning in disaster mitigation and preparation and discusses the need for better responding to people who need to evacuate during emergencies. Recent evacuation studies pay attention to integrating social factors into evacuation modeling for better prediction of evacuation decisions. Our goal is to address the impact of social behavior on the sheltering choices of evacuees and to explore the potential contributions of including social network characteristics in the decision-making process of authorities. We present the shelter utilization problem in South Carolina during Hurricane Florence and discuss an agent-based modeling approach that considers social community structures in modeling the shelter choice behavior of socially connected individuals.
Address Virginia Tech; Virginia Tech; University of Wyoming
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-22 ISBN 2411-3408 Medium
Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes duygu@vt.edu Approved no
Call Number Serial 2223
Share this record to Facebook
 

 
Author Xiujuan Zhao; Graham Coates; Wei Xu
Title Solving the earthquake disaster shelter location-allocation problem using optimization heuristics Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 50-62
Keywords Earthquake shelter location-allocation; multi-objective optimization; GA; MPSO
Abstract (up) Earthquakes can cause significant disruption and devastation to populations of communities. Thus, in the event of an earthquake, it is necessary to have the right number of disaster shelters, with the appropriate capacity, in the right location in order to accommodate local communities. Mathematical models, allied with suitable optimization algorithms, have been used to determine the locations at which to construct disaster shelters and allocate the population to them. This paper compares the use of two optimization algorithms, namely a genetic algorithm and a modified particle swarm optimization, both of which have advantages and disadvantages when solving the disaster shelter location-allocation problem.
Address Beijing Normal University; Durham University
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1999
Share this record to Facebook
 

 
Author Ivar Svare Holand; Peter Mozelius; Trond Olav Skevik
Title A structured and dynamic model for emergency management exercises Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 186-197
Keywords Emergency exercises, Vulnerability assessment, Non-linear emergency exercise model, Norwegian-Swedish cross-border collaboration, Gaining Security Symbiosis (GSS) projects
Abstract (up) Emergencies are management challenges, and emergency exercises that involve multiple collaborating parties is a means towards mastering them. Such exercises are often conducted in a virtual training environment based on complex disaster scenarios. The reported study was carried out using a requirement-focused design approach. The aim was to describe and discuss a relevant design for lean, dynamic, and cost-efficient emergency management exercise systems. Data were gathered from a literature study and analyses of earlier emergency management projects in which the authors had participated. Despite the complexity of many current emergency management exercises, the scenarios usually involve only the response phases and have a linear structure that hinders both didactic aspects and the software structure. The conclusion drawn from the study is that an emergency management exercise model should focus on managing the activities that correspond to alternatives that unfold from a dynamic scenario. Finally, the authors recommend the principles of alternate reality games as a way towards more dynamic and cost-efficient emergency exercise systems.
Address Nord University; Mid Sweden University; Nord University
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes ivar.s.holand@nord.no Approved no
Call Number ISCRAM @ idladmin @ Serial 2324
Share this record to Facebook
 

 
Author Eva Petitdemange; Elyes Lamine; Franck Fontanili; Matthieu Lauras
Title Enhancing Emergency Call Centers' Performance Through a Data-driven Simulation Approach Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 218-227
Keywords Emergency Call Center, Performance, Simulation, Data-Driven, Continuous Improvement, Organization.
Abstract (up) Emergency Call Centers (ECCs) can be considered as the starting point of the pre-hospital emergency medical system. Although, ECCs exist everywhere, their business processes and their performance levels differ from one place to another, even sometimes in a same country. By definition, users expect a high level of performance, particularly regarding the waiting time and the processing time of the calls. Additionally, ECCs might have difficulties to manage sudden rise of activities following disasters impacting huge number of victims for instance. To support ECCs in their continuous improvement steps, this paper suggests an innovative framework and its associated tools to support both diagnosis of current organizations and enhancement of their performance. Concretely, the proposal is data-driven and simulation oriented. First experiments are shown in order to demonstrate the potential benefits of such an approach. Avenues for further research are also discussed.
Address IMT Mines Albi, University of Toulouse; IMT Mines Albi, University of Toulouse; IMT Mines Albi, University of Toulouse; IMT Mines Albi, University of Toulouse
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-21 ISBN 2411-3407 Medium
Track Analytical Modeling and Simulation Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes eva.petitdemange@mines-albi.fr Approved no
Call Number Serial 2222
Share this record to Facebook
 

 
Author Yi Xiong; Weiping Si; Xia Wu
Title Analysis of Emergency Response for Accident of Oil and Gas Pipeline Based on Stochastic Petri Net Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Response; Oil and Gas Pipeline Accident; Performance; SPN
Abstract (up) Emergency response plays an important role in reducing the loss of an accident. And the excellent plan is important to ensure the high efficiency of the emergency response system. However, actions of emergency response arranged in emergency plan can hardly be assessed before the plan is used. Stochastic Petri Net (SPN) is proposed to analyze the performance of emergency response for oil and gas pipeline accident. The results show that the average execution time of SPN model can be used to evaluate effectiveness of emergency response. Then place average mark number indicates that emergency decision-making is the most important segment to optimize emergency work flow. And utilization rate of transition shows that decreasing the cost time of maintenance is the key to improve efficiency of emergency response.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3399 ISBN 978-84-608-7984-20 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 1339
Share this record to Facebook
 

 
Author Jacob L. Graham; Mark B. Stephens
Title Analytic Decision Gaming – A Tool to Develop Crisis Response and Clinical Reasoning Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 60-68
Keywords Clinical reasoning, crisis response, medical school, scenario-based training, analytic decision game.
Abstract (up) Emerging threats provide motivation to develop new methods for preparing the next generation of crisis responders. Bayesian theory shifts reasoning toward a probabilistic, epistemic paradigm, giving rise to Evans' revised heuristic-analytic theory. Researchers at The Pennsylvania State University use scenario-based training and the analytic decision game (ADG) to blend and implement these processes as foundational pedagogy for engaging, educating and training medical students as crisis responders and critical thinkers. The ADG scenarios vary by content and level of expertise, lending themselves readily adaptable to both crisis response preparation and the development of clinical reasoning. The ADG creates a virtual crisis requiring participants to engage in scenario management as role-players. For the past two years, medical students from the Penn State College of Medicine, in their first year of training, have participated in the ADG Lights Out scenario, testing community preparation and resilience after a wide-spread and months-long power outage.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2089
Share this record to Facebook
 

 
Author Florent Dubois; Paul Renaud-Goud; Patricia Stolf
Title Dynamic Capacitated Vehicle Routing Problem for Flash Flood Victim’s Relief Operations Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 68-86
Keywords Vehicle Routing Problem; Flash floods; Dynamic
Abstract (up) Flooding relief operations are Dynamic Vehicle Routing Problems (DVRPs). The problem of people evacuation is addressed and formalized in this paper. Characteristics of this DVRP problem applied to the crisis management context and to the requirements of the rescue teams are explained. In this paper, several heuristics are developed and assessed in terms of performance. Two heuristics are presented and adapted to the dynamic problem in a re-optimization approach. An insertion heuristic that inserts demands in the existing plan is also proposed. The evaluation is conducted on various dynamic scenarios with characteristics based on a study case. It reveals better performances for the heuristics with a re-optimization approach.
Address Institut de Recherche en Informatique de Toulouse – Université de Toulouse
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2400
Share this record to Facebook
 

 
Author Robert Zinke; Laura Künzer; Benjamin Schröder; Christina Schäfer
Title Integrating Human Factors into Evacuation Simulations – Application of the Persona Method for Generating Populations Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 127-138
Keywords Persona method; pedestrian simulation; preparedness; human factors; evacuation
Abstract (up) For assessing evacuation dynamics in disaster situations, current approaches of pedestrian simulations increasingly include additional human characteristics. One aim is to assess realistic effects of structural changes of an infrastructure on evacuation behavior displayed by users. Creating agents with supplementary physical and psychological human characteristics and assembling the agents in accordance to the user's population may be beneficial not only to support decision making. The analysis of simulated effects of, e.g., informational strategies will foster crisis and disaster management. This paper combines knowledge about users in subway systems and highlights benefits of using the Persona method to improve objectivity in the specification of different user types. Persona method is adapted to pedestrian simulation. Using data from the authors´ field studies, personas are developed and implemented for an evacuation simulation. First findings suggest that including personas into pedestrian simulation influences the results with respect to the required safe evacuation time (RSET).
Address Team Human Factors; Jülich Supercomputing Centre; CIK -Paderborn University
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2005
Share this record to Facebook
 

 
Author Ayda Kianmehr; Duygu Pamukcu
Title Analyzing Citizens’ Needs during an Extreme Heat Event, based on 311 Service Requests: A Case Study of the 2021 Heatwave in Vancouver, British Columbia Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 174-182
Keywords Extreme heat; 311 calls; weather-related variables; time-series analysis; hazard preparedness
Abstract (up) Heat waves are becoming more common and intense with global climate change, which requires deploying resilience strategies of governments to prepare for long-term trends of higher temperatures and carefully plan emergency responses for such extreme heat events. The British Columbia province of Canada is one of the regions severely affected by extreme climatic events in 2021, which resulted in several deaths and put hundreds of thousands of people scrambling for relief. This study examines the public reactions to one of these extreme climatic events, the 2021 Pacific Northwest heatwave, in a non-emergency service request platform to uncover the types of municipal service needs during severe climatic disasters. City of Vancouver 311 system data is used to identify the impact of the heatwave on the frequency and types of service needs and examine the significance of the relationship between climatic conditions and the non-emergency service volumes.
Address Virginia Tech; Virginia Tech
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Analytical Modeling and Simulation Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2408
Share this record to Facebook
 

 
Author Julius Bañgate; Julie Dugdale; Carole Adam; Elise Beck
Title A Review on the Influence of Social Attachment on Human Mobility During Crises Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 110-126
Keywords Multi agent modelling; social attachment; affiliation human behaviour; mobility
Abstract (up) Human behaviour during crisis evacuations is soial in nature. In particular, social attachment theory posits that proximity of familiar people, places, objects, etc. promotes calm and a feeling of safety, while their absence triggers panic or flight. In closely bonded groups such as families, members seek each other and evacuate as one. This makes attachment bonds necessary in the development of realistic models of mobility during crises. In this paper, we present a review of evacuation behaviour, theories on social attachment, crises mobility, and agent-based models. We found that social attachment influences mobility in the dierent stages of evacuation (pre, during and post). Based on these findings, we intend to develop a multi-agent model of mobility during seismic crises, using the belief, desire and intention (BDI) agent architecture.
Address LIG, University Grenoble-Alpes, France; PACTE, University Grenoble-Alpes, France; University of Adger, Norway
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 2004
Share this record to Facebook