|   | 
Details
   web
Records
Author (up) Andrew J. Hampton; Shreyansh Bhatt; Alan Smith; Jeremy Brunn; Hemant Purohit; Valerie L. Shalin; John M. Flach; Amit P. Sheth
Title Constructing Synthetic Social Media Stimuli for an Emergency Preparedness Functional Exercise Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 181-189
Keywords Social media; emergency preparedness; synthetic microblog corpus; disaster response training
Abstract This paper details the creation of a massive (over 32,000 messages) artificially constructed ‘Twitter’ microblog stream for a regional emergency preparedness functional exercise. By combining microblog conversion, manual production, and a control set, we created a web-based information stream providing valid, misleading, and irrelevant information to public information officers (PIOs) representing hospitals, fire departments, the local Red Cross, and city and county government officials. Addressing the challenges in constructing this corpus constitutes an important step in providing experimental evidence that complements observational study, necessary for designing effective social media tools for the emergency response setting. Preliminary results in the context of an emergency preparedness exercise suggest how social media can participate in the work practice of a PIO concerning the assessment of the disaster and the dissemination of information within the emergency response organization and to the public.
Address University of Memphis; Wright State University; George Mason University
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1456
Share this record to Facebook
 

 
Author (up) Charles Bailly; Carole Adam
Title An interactive simulation for testing communication strategies in bushfires Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 72-84
Keywords Agent-based modelling and simulation; communication; crisis management; GAMA platform; serious game
Abstract Australia is frequently hit by bushfires. In 2009, the ”Black Saturday” fires killed 173 people and burnt hectares of bush. As a result, a research commission was created to investigate, and concluded that several aspects could be improved, in particular better understanding of the population actual behaviour, and better communication with them. We argue that agent-based modelling and simulation is a great tool to test possible communication strategies, in order to deduce valuable insight for emergency managers before new fires happen. In this paper, we extend an existing agent-based model of the population behaviour in bushfires. Concretely, we added a communication model based in social sciences, and user interactivity with the model. We present the results of first experiments with diË™erent communication strategies, providing valuable insight for better communication with the population during such events. This model is still preliminary and will eventually be turned into a serious game.
Address Grenoble-INP, LIG, Grenoble, France; Univ. Grenoble-Alpes, LIG, F-38000 Grenoble, France
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1447
Share this record to Facebook
 

 
Author (up) Christopher W. Zobel; Milad Baghersad; Yang Zhang
Title Calling 311: evaluating the performance of municipal services after disasters Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 164-172
Keywords Resilience; Municipal Departments; 311 Service Center; Disaster; Critical Infrastructure
Abstract As part of a movement towards enabling smart cities, a growing number of urban areas in the USA, such as New York City, Boston, and Houston, have established 311 call centers to receive service requests from their citizens through a variety of platforms. In this paper, for the first time, we propose to leverage the large amount of data provided by these non-emergency service centers to help characterize their operational performance in the context of a natural disaster event. We subsequently develop a metric based on the number of open service requests, which can serve as the basis for comparing the relative performance of different departments across different disasters and in different geographic locations within a given urban area. We then test the applicability and usefulness of the approach using service request data collected from New York City’s 311 service center.
Address Virginia Tech
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1454
Share this record to Facebook
 

 
Author (up) Daniel Iland; Elizabeth Belding
Title Dynamic, Data-Driven Optimization of Solar Powered Charging Kiosks for Crisis Response Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Solar Power; Charging Kiosk; Emergency Power; Current Limiting; Rapid Reconfiguration
Abstract In this paper, we describe methodologies for using portable, solar powered charging kiosks to provide mobile phone charging to communities following a disaster. We do not strive to provide a comprehensive alternative to grid power, rather we focus on charging mobile phones and other battery-powered devices. The small size of portable solar systems come with a trade-off: demand for power may exceed battery capacity and solar power generation. In such cases, power output must be regulated in order to maintain the functionality of the system, or the system may be modified to produce more power by adding more solar panels, or to store more power by adding additional batteries. We model user demand for power and kiosk power generation, battery status, and power output to inform the development, deployment, operation and reconfiguration of such kiosks following a disaster.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-21 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1340
Share this record to Facebook
 

 
Author (up) Flavio Dusse; Renato Novais; Manoel Mendonça
Title Investigating the Use of Visual Analytics to Support Decision-Making in Crisis Management: A Multi-Method Approach Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 83-98
Keywords Data Collection Methods; Crisis Management; Decision-Making; Visual Analytics.
Abstract Like Crisis Management (CM) itself, Visual Analytics (VA) is a multi-disciplinary research area and is potentially useful to analyze and understand the huge amount of multidimensional data produced in a crisis. Our work investigates how researchers and practitioners are using VA in decision-making in CM. This paper firstly reports on a systematic mapping study to analyze the available information visualization tools and their applications in CM. To complement this information, we report on questionnaires and ethnographic studies applied during the large events held in Brazil in recent years. Then, we analyzed existing tools for visualizing crisis information. Lastly, we analyzed the data gathered from interviews with six professional crisis managers. The compiled results show that the full potential of VA is not being applied in the state-of-the-art and state-of-the-practice. We consider that further researches in the application of VA is required to improve decision-making processes in crisis management.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes dussebr@dcc.ufba.br Approved no
Call Number Serial 1540
Share this record to Facebook
 

 
Author (up) Gerhard Rauchecker; Guido Schryen
Title Decision Support for the Optimal Coordination of Spontaneous Volunteers in Disaster Relief Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 69-82
Keywords Coordination of spontaneous volunteers; volunteer coordination system; decision support; scheduling optimization model; linear programming
Abstract When responding to natural disasters, professional relief units are often supported by many volunteers which are not affiliated to humanitarian organizations. The effective coordination of these volunteers is crucial to leverage their capabilities and to avoid conflicts with professional relief units. In this paper, we empirically identify key requirements that professional relief units pose on this coordination. Based on these requirements, we suggest a decision model. We computationally solve a real-world instance of the model and empirically validate the computed solution in interviews with practitioners. Our results show that the suggested model allows for solving volunteer coordination tasks of realistic size near-optimally within short time, with the determined solution being well accepted by practitioners. We also describe in this article how the suggested decision support model is integrated in the volunteer coordination system, which we develop in joint cooperation with a disaster management authority and a software development company.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes gerhard.rauchecker@ur.de Approved no
Call Number Serial 1539
Share this record to Facebook
 

 
Author (up) Haitao Sun; Zhiru Wang; Guofeng Su; Jianguo Chen
Title Topological Structure Vulnerability Assessment of Shanghai Urban Metro Networks Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Urban Metro Networks; Vulnerability; Robustness; Target Attack; Random Failure
Abstract Topological structure vulnerability assessment approach for Urban Metro Networks (UMNS) was proposed in order to decrease the impact caused by incidents. Failure scale of stations and sections random failure and target attacks was evaluated. The results show that UMNS is more vulnerable to target attacks on stations than random failure on stations. But UMNS is less vulnerable to target attacks on sections than random failure on sections. Additionally, UMNS is more vulnerable to station failure than sections. It could be concluded as more resources should be put on big transfer stations in UMNS operation management to avoid large scale impacts. The proposed methodology is not intended to predict the occurrence of events but rather to be used a management tool. Results from the evaluation are valuable elements in planning UMNS. They can be used for network planning, further detailed hazard studies, deciding on the arrangement of emergency resources.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-22 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1341
Share this record to Facebook
 

 
Author (up) Jacob L. Graham; Mark B. Stephens
Title Analytic Decision Gaming – A Tool to Develop Crisis Response and Clinical Reasoning Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 60-68
Keywords Clinical reasoning; crisis response; medical school; scenario-based training; analytic decision game.
Abstract Emerging threats provide motivation to develop new methods for preparing the next generation of crisis responders. Bayesian theory shifts reasoning toward a probabilistic, epistemic paradigm, giving rise to Evans’ revised heuristic-analytic theory. Researchers at The Pennsylvania State University use scenario-based training and the analytic decision game (ADG) to blend and implement these processes as foundational pedagogy for engaging, educating and training medical students as crisis responders and critical thinkers. The ADG scenarios vary by content and level of expertise, lending themselves readily adaptable to both crisis response preparation and the development of clinical reasoning. The ADG creates a virtual crisis requiring participants to engage in scenario management as role-players. For the past two years, medical students from the Penn State College of Medicine, in their first year of training, have participated in the ADG Lights Out scenario, testing community preparation and resilience after a wide-spread and months-long power outage.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes jlg34@psu.edu Approved no
Call Number Serial 1537
Share this record to Facebook
 

 
Author (up) Julius Bañgate; Julie Dugdale; Carole Adam; Elise Beck
Title A Review on the Influence of Social Attachment on Human Mobility During Crises Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 110-126
Keywords Multi agent modelling; social attachment; affiliation human behaviour; mobility
Abstract Human behaviour during crisis evacuations is social in nature. In particular, social attachment theory posits that proximity of familiar people, places, objects, etc. promotes calm and a feeling of safety, while their absence triggers panic or flight. In closely bonded groups such as families, members seek each other and evacuate as one. This makes attachment bonds necessary in the development of realistic models of mobility during crises. In this paper, we present a review of evacuation behaviour, theories on social attachment, crises mobility, and agent-based models. We found that social attachment influences mobility in the di˙erent stages of evacuation (pre, during and post). Based on these findings, we intend to develop a multi-agent model of mobility during seismic crises, using the belief, desire and intention (BDI) agent architecture.
Address LIG, University Grenoble-Alpes, France; PACTE, University Grenoble-Alpes, France; University of Adger, Norway
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1450
Share this record to Facebook
 

 
Author (up) Lauren Bateman; Erica Gralla
Title Evaluating Strategies for Intra-Organizational Information Management in Humanitarian Response Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 145-157
Keywords information management; agent based model; humanitarian response
Abstract Information management is critical in humanitarian response, yet intra-organizational information management practices have not been well-studied. This paper evaluates several strategies for intra-organizational information management. An agent-based model represents the dynamics of information-gathering and -sharing, in order to examine the impact of each strategy on (1) the time required to acquire adequate information for decision-making and (2) the amount of excess information acquired in the process. The results show that holding regular information-sharing meetings significantly reduces the time to acquire adequate information, but does not reduce information overload; however, deploying an information management specialist reduces both time required and information overload. The results support recommendations for humanitarian organizations deciding how to improve their internal information management approaches.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes lrbateman@gwu.edu Approved no
Call Number Serial 1544
Share this record to Facebook
 

 
Author (up) Lida Huang; Guoray Cai; Hongyong Yuan; Jianguo Chen; Yan Wang; Feng Sun
Title Modeling Threats of Mass Incidents Using Scenario-based Bayesian Network Reasoning Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 121-134
Keywords Bayesian network; mass incidents; threat assessment; scenario analysis; interpretive structural modeling.
Abstract Mass incidents represent a global problem, putting potential threats to public safety. Due to the complexity and uncertainties of mass incidents, law enforcement agencies lack analytical models and structured processes for anticipating potential threats. To address such challenge, this paper presents a threat analysis framework combining the scenario analysis method and Bayesian network (BN) reasoning. Based on a case library
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes hld14@mails.tsinghua.edu.cn Approved no
Call Number Serial 1542
Share this record to Facebook
 

 
Author (up) Maël Arnaud; Carole Adam; Julie Dugdale
Title The role of cognitive biases in reactions to bushfires Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 85-96
Keywords Multi-agent modelling; social simulation; cognitive biases; BDI paradigm; Victoria bushfires
Abstract Human behaviour is influenced by many psychological factors such as emotions, whose role is already widely recognised. Another important factor, and all the more so during disasters where time pressure and stress constrain reasoning, are cognitive biases. In this paper, we present a short overview of the literature on cognitive biases and show how some of these biases are relevant in a particular disaster, the 2009 bushfires in the South-East of Australia. We provide a preliminary formalisation of these cognitive biases in BDI (beliefs, desires, intentions) agents, with the goal of integrating such agents into agent-based models to get more realistic behaviour. We argue that taking such ”irrational” behaviours into account in simulation is crucial in order to produce valid results that can be used by emergency managers to better understand the behaviour of the population in future bushfires.
Address Univ. Grenoble Alpes, LIG, F-38000
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1448
Share this record to Facebook
 

 
Author (up) Mark Parent; Jean-François Gagnon; Tiago H. Falk; Sébastien Tremblay
Title Modeling the Operator Functional State for Emergency Response Management Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Management; Simulation; Operator Functional State; Mental Workload; Stress
Abstract New technologies are available for emergency management experts to help them cope with challenges such as information overload, multitasking and fatigue. Among these technologies, a wide variety of physiological sensors can now be deployed to measure the Operator Functional State (OFS). To be truly useful, such measures should not only characterize the overall OFS, but also the specific dimensions such as stress or mental workload. This experiment aimed to (1) design a multi-dimensional model of OFS, and (2) test its application to an emergency management situation. First, physiological data of participants were collected during controlled experimental tasks. Then, a support vector classifier of mental workload and stress was trained. Finally, the resulting model was tested during an emergency management simulation. Results suggest that the model could be applied to emergency management situations, and leave the door open for its application to emergency response on the field.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-19 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1337
Share this record to Facebook
 

 
Author (up) Maude Arru; Elsa Negre
Title People Behaviors in Crisis Situations: Three Modeling Propositions Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 139-149
Keywords Behaviors; modeling, crisis management; data analysis
Abstract Warnings can help to prevent damages and harm if they are issued timely and provide information that help responders and population to adequately prepare for the disaster to come. Today, there are many indicator and sensor systems that are designed to reduce disaster risks. These systems have proved to be eË™ective. Unfortunately, as all systems including human beings, a part of unpredictable remains. Indeed, each person behaves diË™erently when a problem arises. In this paper, we focus on people behaviors in crisis situations: from the definition of factors that impact human behavior to the integration of these behaviors, with three diË™erent modeling propositions, into a warning system in order to have more and more eÿcient crisis management systems.
Address Paris-Dauphine University PSL Research University CNRS, LAMSADE 75016 Paris, France;
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1452
Share this record to Facebook
 

 
Author (up) Michael Bartolacci; Stanko Dimitrov
Title A Network Interdiction Perspective for Providing Emergency Communications: An Analysis for Promoting Resiliency Subject to Resource Constraints and Security Concerns Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Emergency Communications; Network Interdiction Model
Abstract Disasters, whether natural or manmade, and other types of emergencies create the need for immediate and secure communications between and among the affected populace, governmental agencies, non-governmental organizations (NGOs) and other types of emergency responders. It is through these communications that the affected populace is able to show resilient behavior, both psychologically and economically. A network interdiction model is proposed that can be utilized to create a more reliable design for such a communications network against the motives of would-be attackers whose aim it is to disrupt emergency communications and inflict damage on the affected populace. The contribution of this work is the application of the network interdiction modeling framework to an emergency communication scenario.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-23 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1342
Share this record to Facebook
 

 
Author (up) Miriam Klein; Eric Rigaud; Marcus Wiens; Anouck Adrot; Frank Fiedrich; Nour Kanaan; Andreas Lotter; Farnaz Mahdavian; Yannic Schulte; Frank Schultmann
Title A Multi-Agent System for Studying Cross-Border Disaster Resilience Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 135-144
Keywords Multi-agent system; disaster resilience; coordination procedures; cross-border cooperation; volunteer management
Abstract Resilience to disasters depends on measures taken before, during and after the occurrence of adverse events. These measures require interactions between people belonging to different organizations (public, private, non-profit) and citizens in normal and stressful situations. The efficiency of resilience measures results from the collective interaction of individuals, groups of individuals, and organizations, as well as the situational characteristics of the decision environment. The aim of the French-German research project INCA is to develop a decision support framework for improving cross-border area resilience to disasters. This project comprises the design and the implementation of a multi-agent system with the objective to study the behavioral and organizational implications of cross-border cooperation for crisis management and disaster resilience. The analyzed measures focus on citizens who require medical support and the integration of volunteers into the crisis management procedure. This paper outlines the potentials of the multi-agent system and provides first implementation insights.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes miriam.klein@kit.edu Approved no
Call Number Serial 1543
Share this record to Facebook
 

 
Author (up) Quentin Schoen; Sébastien Truptil; Franck Fontanili; Matthieu Lauras; Anne-Ghislaine Anquetil
Title Tracking in real time the blood products transportations to make good decisions Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 173-180
Keywords Blood; Physical Internet; Complex Event Processing; Process Mining
Abstract The French Blood Establishment (EFS) is the only one in France allowed dealing with the blood supply chain. The EFS centers are scattered in France and blood products are transported over hundreds of kilometers, from collection sites to hubs and from the hubs to distribution sites. The strong constraints on lifetime and storage conditions imply a traceability of transportation steps very accurate, which is necessary in case of unexpected and unwanted events. To make “good” decisions, we propose in this research work to use the Physical Internet philosophy. Thanks to sensors in containers and Complex Event Processing modules to aggregate and filter the data collected, we would be able to create a real time “field model”. In case of crisis this model would be helpful and perfectly adapted to help the crisis unit to make “good” decisions and maybe propose solutions based on the past events.
Address IMT – Mines d’Albi Carmaux – Centre Génie Industriel; Etablissement Français du Sang
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1455
Share this record to Facebook
 

 
Author (up) Robert Zinke; Laura Künzer; Benjamin Schröder; Christina Schäfer
Title Integrating Human Factors into Evacuation Simulations – Application of the Persona Method for Generating Populations Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 127-138
Keywords Persona method; pedestrian simulation; preparedness; human factors; evacuation
Abstract For assessing evacuation dynamics in disaster situations, current approaches of pedestrian simulations increasingly include additional human characteristics. One aim is to assess realistic effects of structural changes of an infrastructure on evacuation behavior displayed by users. Creating agents with supplementary physical and psychological human characteristics and assembling the agents in accordance to the user’s population may be beneficial not only to support decision making. The analysis of simulated effects of, e.g., informational strategies will foster crisis and disaster management. This paper combines knowledge about users in subway systems and highlights benefits of using the Persona method to improve objectivity in the specification of different user types. Persona method is adapted to pedestrian simulation. Using data from the authors´ field studies, personas are developed and implemented for an evacuation simulation. First findings suggest that including personas into pedestrian simulation influences the results with respect to the required safe evacuation time (RSET).
Address Team Human Factors; Jülich Supercomputing Centre; CIK –Paderborn University
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1451
Share this record to Facebook
 

 
Author (up) Simon French; Nikos Argyris; Jim Q. Smith; Stephanie Haywood; Matthew Hort
Title Uncertainty Handling during Nuclear Accidents Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 15-24
Keywords Deep uncertainty; displaying spatial uncertainty; nuclear emergency management; scenario-focused analysis
Abstract In the years following Chernobyl, many reports and projects reflected on how to improve emergency management processes in dealing with an accidental offsite release of radiation at a nuclear facility. A common observation was the need to address the inevitable uncertainties. Various suggestions were made and some of these were researched in some depth. The Fukushima Daiichi Disaster has led to further reflections. However, many of the uncertainties inherent in responding to a threatened or actual release remain unaddressed in the analyses and model runs that are conducted to support the emergency managers in their decision making. They are often left to factor in allowances for the uncertainty through informal discussion and unsupported judgement, and the full range of sources of uncertainty may not be addressed. In this paper, we summarise the issues and report on a project which has investigated the handling of uncertainty in the UK’s national crisis cell. We suggest the R&D programmes needed to provide emergency managers with better guidance on uncertainty and how it may affect the consequences of taking different countermeasures.
Address University of Warwick; University of Loughborough; Public Health England; The Met Office
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1442
Share this record to Facebook
 

 
Author (up) Takuya Oki; Toshihiro Osaragi
Title Evaluation of Conversion to Quake-Resistant Buildings in Terms of Wide-Area Evacuation and Fire-Brigade Accessibility Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 25-41
Keywords Conversion; quake-resistant building; property damage; wide-area evacuation; fire-brigade
Abstract It is important to evaluate the effects of improving the disaster vulnerability of towns by using various indices related to human damage. In this paper, we focus on conversion of low quake-resistant old buildings. Firstly, we construct a simulation model, which describes property damage (such as building-collapse and street-blockage), wide-area evacuation behavior, and fire-brigade’s activities immediately after a large earthquake occurs. Next, using the simulation model, we estimate the travel time required for evacuation, the number of evacuees trapped on streets (or in blocks), and the access time of fire-brigades to fires in case that the ratio of quake-resistant buildings in the area increases to a certain value. Based on the results, we discuss the effects by converting old buildings into quake-resistant ones on reducing the difficulty in wide-area evacuation and improving the accessibility of fire-brigades in multiple study areas with different characteristics.
Address Tokyo Institute of Technology
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1443
Share this record to Facebook
 

 
Author (up) Takuya Oki; Toshihiro Osaragi
Title Wide-area Evacuation Difficulty in Densely-built Wooden Residential Areas Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Large Earthquake; Wide-area Evacuation Difficulty; Property Damage; Multi-Agent Simulation; Densely-built Wooden Residential Area
Abstract In aiming to decrease the number of casualties and people with difficulty in wide-area evacuations due to a large earthquake, it is highly important to visualize and quantify the potential danger in residential areas. In this paper, we construct a multi-agent simulation model, which describes property damage (such as building-collapse, the spread of fire and blocking of streets) and people’s evacuation behavior after an earthquake occurring. Using this simulation model, we quantify the wide-area evacuation difficulty in densely-built wooden residential areas, and evaluate the past project to improve buildings and streets based on this indicator. Furthermore, we demonstrate the effects of adding new evacuation routes between two intersections of streets with narrow width and long distance. Through these case studies, the effectiveness of our simulation model on urban disaster mitigation planning is shown.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-18 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1336
Share this record to Facebook
 

 
Author (up) Tongshen Zheng; Shunjiang Ni; Shifei Shen; Yan Wang; Yang Tai
Title Numerical Study of Radioactive Pollutants Dispersion in Radioactive “Dirty Bomb” Events Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Atmospheric Dispersion; Radioactive “Dirty Bomb”; Configurations of Building; Concentration Distribution; Emergency Response
Abstract The simulation of radioactive pollutants dispersion is critical for emergency response of the nuclear terrorism. The radioactive “dirty bomb”, also called radiological dispersion device (RDD), produced and used by the terrorist to make fearful and radioactive pollution in general, has a great risk on humans. Numerical investigation of the impact of different configurations on radioactive pollution release and dispersion in urban buildings is made in this paper. The numerical simulations used the OpenFOAM, a free and open source software for computational fluid dynamics (CFD), and the simulations can be implanted to the information system of the nuclear terrorism emergency decision support system(EDSS) as the consequence assessment subsystem conveniently. The study showed that the configurations of building canyon and the position relationship of the source item and the buildings both affect the concentration distributions around the buildings.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-24 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1343
Share this record to Facebook
 

 
Author (up) Toshihiro Osaragi
Title Crowding of Various Facilities Relevant to Supporting People Who Have Difficulty Returning Home after a Large Earthquake Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 45-59
Keywords Large earthquake; difficulty in returning home; temporary shelter; support station for people returning home on foot; crowding
Abstract When a large earthquake occurs, many people are presumed to have difficulty in returning home. However, no research has been achieved yet to discuss the congestion of supporting facilities for stranded people in terms of site, the number and spatial distribution. In this study, we construct a simulation model, which describes people’s behavior such as returning home or going to other facilities after an earthquake occurs. Using the model, we estimate the congestion of facilities which varies according to day of the week or the time when the event occurs, and demonstrate the effective methods for reducing the congestion, which include offering information for people and cooperation of private institutions.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszewski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management
Notes osaragi.t.aa@m.titech.ac.jp Approved no
Call Number Serial 1538
Share this record to Facebook
 

 
Author (up) Victor A. Bañuls; Cristina López-Vargas; Fernando Tejedor; Murray Turoff; Miguel Ramirez de la Huerga
Title Validating Cross-Impact Analysis in Project Risk Management Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Scenarios; Cross-Impact Analysis (CIA); Interpretive Structural Modeling (ISM); Risk Events; Project Management
Abstract Companies work increasingly more on projects as a means of executing organizational decisions. However, too many enterprise projects result in failure. Hence, firms should follow a risk management method that drives their projects toward success. Nevertheless, project managers often deal with risks intuitively. This is partly because they lack the proper means to correctly manage the underlying risks which affect the entire cycle of their projects. Therefore, one purpose is to identify the critical events that managers may encounter before the beginning of the project and during its development. In addition, we propose CIA-ISM to represent existing relationships between the unforeseen events in the project’s lifetime and their key performance indicators. This also predicts the influence of risks on project performance over time by means of scenarios. The tool proposed would thus help practitioners to manage enterprise projects risks in a more effective and proactive way. We have validated the predictive capability of the CIA-ISM model with 22 real projects. The results show a high level of predictive capability in terms of risk analysis and key performance indicators.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-84-608-7984-8 Medium
Track Analytical Modeling and Simulation Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1338
Share this record to Facebook
 

 
Author (up) Xiaofeng Hu; Shifei Shen; Jiansong Wu
Title Modeling of attacking and defending strategies in situations with intentional threats Type Conference Article
Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012
Volume Issue Pages
Keywords Decision theory; Game theory; Information systems; Risk assessment; Targets; Attacking strategy; Intentional threats; Matrix game; Scientific basis; Strategic game; Strategy; Decision making
Abstract Intentional threats including terrorism have become a worldwide catastrophe risk since recent years. To protect the cities from being attacked, the macro-level study of decision analysis should be given more considerations. In this paper, we proposed a model for describing the strategic game between attackers and defenders based on the methodology of matrix game. This model can be employed to determine which target will be selected by attackers and which attacking strategy and defending strategy will be chosen by attackers and defenders respectively. Furthermore, the defenders of the city can use this model to set priorities among their defending strategies. The importance of this work is to establish a reasonable framework for modeling the attacking and defending strategies rather than assessing the real risk of urban targets, so the model is illustrated by using fictitious numbers. The model proposed in this paper can provide scientific basis for macroscopic decision making in responding to intentional threats. © 2012 ISCRAM.
Address Tsinghua University, China
Corporate Author Thesis
Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780864913326 Medium
Track Analytical Modeling and Simulation