toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alexander Kiselev; Sergey Bogatov pdf  isbn
openurl 
  Title Model PROLOG for countermeasures efficacy assessment and its calculation algorithm verification on the base of the Chazhma Bay accident data Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Algorithms; Cobalt compounds; Dispersions; Efficiency; Information systems; Landforms; Radioactivity; Calculation algorithms; Complex terrains; Computational model; Dry deposition velocities; Gaussian dispersions; Methodical approach; Radioactive contamination; Surface contaminations; Accidents  
  Abstract Methodical approaches used in the computational model “PROLOG” are given in the paper. This model is intended for assessing radiological situations and an efficiency of counter measures after short term radioactive releases. Basic local Gaussian dispersion algorithm is supplemented with modules for assessing a plume rise, dry deposition velocities, effect of buildings and complex terrain, etc. The modules provide a compromise between simplicity, shortage of initial data and adequacy of the model in case of real accident. Approaches to assess the dose and countermeasure efficiency are presented as well. Plume rise, complex terrain and contaminant polydispersity modeling approaches were tested on the basis of comparison of calculation and experimental results for dose rate and Co-60 surface contamination measured after the Chazhma bay accident in 1985. © 2012 ISCRAM.  
  Address IBRAE RAN, Russian Federation  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 140  
Share this record to Facebook
 

 
Author (up) Alexei Sharpanskykh pdf  isbn
openurl 
  Title An agent-based approach for safety analysis of safety-critical organizations Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Dynamics; Information systems; Multi agent systems; Societies and institutions; Agent-based approach; Air navigation service providers; Complex dynamics; Emergence; Organization model; Organizational dynamics; Safety analysis; Traditional approaches; Safety engineering  
  Abstract Modern safety-critical organizations are characterized by complex, nonlinear dynamics involving many interrelated actors and processes. Safety issues that emerge from these complex dynamics increasingly remain hidden, until an incident or even a serious accident occurs. Traditional safety analysis methods developed long ago for much simpler organizations cannot help identifying, explaining and predicting many safety-related properties of modern organizations. To address this issue, in the paper a formal approach is proposed to establish relations between local dynamics of actors of a complex safety-critical organization and global safetyrelated properties that emerge from these dynamics. In contrast to the traditional approaches, the organizational dynamics are specified by taking the agent perspective with an organizational layer. The application of the approach is illustrated by a simulation case study, in which spread of safety-critical information in an air navigation service provider is investigated. © 2012 ISCRAM.  
  Address VU University Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 205  
Share this record to Facebook
 

 
Author (up) Anna Gustafsson; Tobias Andersson Granberg pdf  isbn
openurl 
  Title Dynamic planning of fire and rescue services Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Information systems; Decision support tools; Dispatch; Dynamic planning; Emergency response; Preparedness; Decision support systems  
  Abstract We discuss decision support tools used for more efficient planning of fire and rescue services. The methodology considers small and flexible units and includes dynamic utilization of the existing resources. We develop a quantitative measure for preparedness and use it as a basis for decision support. By constantly accounting for the current situation and using intelligent strategies to locate and allocate resources that support good preparedness, response times can be shortened. The tools will be tested using an experimental setup that includes human-in-the-loop simulations, and the results will compare situations that occur when the decision makers have and do not have access to the developed tools. © 2012 ISCRAM.  
  Address Div. Communication and Transport Systems, ITN, Linköping University, Sweden  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 122  
Share this record to Facebook
 

 
Author (up) Beate Rottkemper; Kathrin Fischer pdf  isbn
openurl 
  Title Decision making in humanitarian logistics – A multi-objective optimization model for relocating relief goods during disaster recovery operations Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 647-657  
  Keywords Budget control; Decision making; Disasters; Information systems; Mathematical models; Multiobjective optimization; Recovery; Constraint methods; Decision making support; Disaster situations; Humanitarian logistics; Humanitarian operations; Multi objective decision making; Multi-objective optimization models; Scenario Planning; Emergency services  
  Abstract Disaster recovery operations rarely proceed smoothly and disruptions often require the redistribution of relief items. Such a redistribution has to be carried out taking into account both the current disruption and the uncertainty regarding possible future incidents in the respective area. As decisions have to be made fast in humanitarian operations, extensive optimization runs cannot be conducted in such a situation. Nevertheless, sensible decisions should be made to ensure an efficient redistribution, considering not only satisfaction of needs but also operational costs, as the budget is usually scarce in the recovery phase of a disaster. In this work, different scenarios are generated and then solved with a multiobjective optimization model to explore possible developments. By evaluating the results of these scenarios, decision rules are identified which can support the decision maker in the actual disaster situation in making fast, but nevertheless well-founded, decisions.  
  Address Institute for or and is Hamburg, University of Technology, Germany  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 895  
Share this record to Facebook
 

 
Author (up) Benjamin Heuer; Jan Zibuschka; Heiko Roßnagel; Johannes Maucher pdf  isbn
openurl 
  Title Empirical analysis of passenger trajectories within an urban transport hub Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Algorithms; Information systems; Trajectories; Urban transportation; Central stations; Data mining algorithm; Empirical analysis; Empirical data; Passenger movements; Simulation framework; Urban transport; Data mining  
  Abstract In this contribution we present an analysis of passenger trajectories in an urban transportation hub. We collected an extensive amount of empirical data consisting of both gate and individual stalking observation in the central station of Cologne. Three different data mining algorithms are used to analyze this data, producing both data that may be used as input for simulation frameworks, and, as an aside, visualizations of passenger movements that could be of high interest to transport and emergency managers. © 2012 ISCRAM.  
  Address Hochschule der Medien (HdM), Germany; Fraunhofer IAO, Germany  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 129  
Share this record to Facebook
 

 
Author (up) Carolyn Huston; Jennifer Davis; Petra Kuhnert; Andrew Bolt pdf  isbn
openurl 
  Title Creating Trusted Extensions to Existing Software Tools in Bushfire Consequence Estimation Type Conference Article
  Year 2023 Publication Proceedings of the ISCRAM Asia Pacific Conference 2022 Abbreviated Journal Proc. ISCRAM AP 2022  
  Volume Issue Pages 25-34  
  Keywords Wildfires; Trustworthiness; Optimal Decisions; Affordance Analysis; Emulation  
  Abstract Bushfire modelling has advanced with wildfire simulators such as Spark and Phoenix Rapidfire that can generate plausible fire dynamics and simulations that decision-makers can easily explore. With extreme weather impacting the Australian landscapes through the onset of droughts and heatwaves, it is becoming more important to make decisions rapidly from fire simulations. An element of this decision-making process is trust, in which the decision-maker feels empowered to make decisions from models of complex systems like fire. We propose a framework for decision-making that makes use of a fire emulator, a surrogate version of Spark, to facilitate faster exploration of wildfire predictions and their uncertainties under a changing climate. We discuss the advantages and next steps of an emulator model using the mechanisms and conditions framework, a powerful vocabulary and design framework that builds in trust to allow users of a technology to understand and accept the features of a system.  
  Address CSIRO Data61; Australia National University; CSIRO Data61; CSIRO Data61  
  Corporate Author Thesis  
  Publisher Massey Unversity Place of Publication Palmerston North, New Zealand Editor Thomas J. Huggins, V.L.  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-0-473-66845-7 Medium  
  Track Analytical Modelling and Simulation Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2477  
Share this record to Facebook
 

 
Author (up) Chao Sun; Fushen Zhang; Shaobo Zhong; Quanyi Huang pdf  isbn
openurl 
  Title Expression and Deduction of emergency scenario based on scenario element model Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Contingency plan; Emergencies; Evolution of scenario; Scenario; Scenario Element  
  Abstract In the context of an era filled with frequent occurrence of emergencies, it is urgent to carry out effective treatment. The existing studies focus their research on general rule of emergency evolution, ignoring the consideration of concrete composition of scenario, whilethe formulation of contingency plan based on the real evolution process of the emergency is rare. In this paper, the basic model of scenario elements is proposed firstly. Next, from the perspective of evolution and disposal of emergency, the framework of scenario for emergencies and emergency disposal is put forward, which paves the way for depiction and scenario analysis of emergency. Finally, this paper takes the stampede as an example, dividing the scenario of emergency and its components, namely scenario elements, and representing the evolution scenario of stampede by scenario elements model. Our method takes advantage of scenario elements model to provide support for the formulation and evaluation of emergency exercise.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1189  
Share this record to Facebook
 

 
Author (up) Christopher W. Zobel pdf  isbn
openurl 
  Title Analytically comparing disaster recovery following the 2012 derecho Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 678-682  
  Keywords Disasters; Electric utilities; Information systems; Appalachian; Derecho; Disaster recovery; Mid-Atlantic; Power company; Quantitative modeling; Recovery process; Work in progress; Recovery  
  Abstract This work in progress paper discusses analytically characterizing nonlinear recovery behavior through the context of the derecho windstorm that struck the mid-Atlantic United States in the summer of 2012. The focus is on the recovery efforts of the Appalachian Power Company, and the discussion includes a look at the need for communicating the progress of such recovery efforts to the public. Publicly available recovery data is analyzed and compared with respect to the relative behaviors exhibited by two different nonlinear recovery processes, and some of the implications for understanding the efficiency of different disaster recovery operations are discussed.  
  Address Virginia Tech, United States  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1164  
Share this record to Facebook
 

 
Author (up) Christopher W. Zobel; Stanley E. Griffis; Steven A. Melnyk; John R. MacDonald pdf  isbn
openurl 
  Title Characterizing disaster resistance and recoveryusing outlier detection Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Computer simulation; Information systems; Statistics; Time series analysis; Disaster resiliences; Disaster resistance; Interaction effect; Outlier Detection; Predicted Resilience; Resilient behavior; Simulation; Transient behavior; Disasters  
  Abstract Most definitions of disaster resilience incorporate both the capacity to resist the initial impact of a disaster and the ability to recover after it occurs. Being able to characterize and analyze resilient behavior can lead to improved understanding not only of the capabilities of a given system, but also of the effectiveness of different strategies for improving its resiliency. This paper presents an approach for quantifying the transient behavior resulting from a disaster event in a way that allows researchers to not only describe the transient response but also assess the impact of various factors (both main and interaction effects) on this response. This new approach combines simulation modeling, time series analysis, and statistical outlier detection to differentiate between disaster resistance and disaster recovery. Following the introduction of the approach, the paper provides a preliminary look at its relationship to the existing concept of predicted disaster resilience. © 2012 ISCRAM.  
  Address Virginia Tech, United States; Michigan State University, United States  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 247  
Share this record to Facebook
 

 
Author (up) Dimitris Zisiadis; Spyros Kopsidas; Vassilis Grizis; George Thanos; George Leventakis; Leandros Tassiulas pdf  isbn
openurl 
  Title STAR-TRANS Modeling Language (STML) modeling risk in the STAR-TRANS risk assessment framework for interconnected transportation systems Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Computer programming languages; Information systems; Risk assessment; Transportation; Comprehensive transportation; Domain specific languages; Heterogeneous transport networks; Model languages; Risk assessment framework; Star-Trans; Stml; Transportation network; Stars  
  Abstract The present paper introduces a high level modeling language, capable of expressing the concepts and processes of the Strategic Risk Assessment and Contingency Planning in Interconnected Transportation Networks (STAR-TRANS) framework. STAR-TRANS is a comprehensive transportation security risk assessment framework for assessing related risks that provides cohered contingency management procedures for interconnected, interdependent and heterogeneous transport networks. STAR-TRANS modeling Language (STML) is a domain specific language combining language simplicity with a very clear syntax, providing all the necessary elements (assets, threats, incidents, consequences etc.) to model the STAR-TRANS risk assessment framework. © 2012 ISCRAM.  
  Address Centre for Research and Technology Hellas, Greece; Center for Security Studies (KE.ME.A.), Greece; University of Aegean, Greece  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 246  
Share this record to Facebook
 

 
Author (up) Douglas Alem; Alistair Clark pdf  isbn
openurl 
  Title Insights from two-stage stochastic programming in emergency logistics Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords disaster in Rio de Janeiro; disaster relief; Emergency logistics; floods, landslides; scenario generation; two-stage stochastic programming  
  Abstract This paper discusses the practical aspects and resulting insights of the results of a two-stage mathematical network flow model to help make the decisions required to get humanitarian aid quickly to needy recipients as part of a disaster relief operation. The aim of model is to plan where to best place aid inventory in preparation for possible disasters, and to make fast decisions about how best to channel aid to recipients as fast as possible. Humanitarian supply chains differ from commercial supply chains in their greater urgency of response and in the poor quality of data and increased uncertainty about important inputs such as transportation resources, aid availability, and the suddenness and degree of “demand”. The context is usually more chaotic with poor information feedback and a multiplicity of decision-makers in different aid organizations. The model attempts to handle this complexity by incorporating practical decisions, such as pre-allocation of emergency goods, transportation policy, fleet management and procurement, in an uncertainty environment featured by a scenario-based approach. Preliminary results based on the floods and landslides disaster of the Mountain Region of Rio de Janeiro state, Brazil, point to how to cope with these challenges by using the mathematical model.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1186  
Share this record to Facebook
 

 
Author (up) Fabiana Santos Lima; Bernd Hellingrath; Adam Widera; Mirian Buss Gonçalves pdf  isbn
openurl 
  Title A systemic process model for procurement decisions in humanitarian logistics Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 688-692  
  Keywords Decision support systems; Disaster prevention; Information systems; Humanitarian logistics; K-means; Network flow problems; Process model; Quantitative modeling; Supply chains  
  Abstract The relief organizations work in volatile environments involving a variety of actors with different skills and knowledge. The service of emergency for victims of natural disasters requires a rapid decision-making. The objective of the approach presented in this paper is to develop a Systemic Process Model (SPM) for procurement decisions in humanitarian logistics. The SPM aims to support procurement tasks of humanitarian organizations during the response phase in disaster relief. The approach provides a decision support tool using an appropriate quantitative model reflecting the specific area of humanitarian logistics processes.  
  Address Federal University of Santa Catarina, Brazil; University of Münster, Germany  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 703  
Share this record to Facebook
 

 
Author (up) Florian Brauner; Thomas Münzberg; Marcus Wiens; Frank Fiedrich; Alex Lechleuthner; Frank Schultmann pdf  isbn
openurl 
  Title Critical Infrastructure Resilience: A Framework for Considering Micro and Macro Observation Levels Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Benchmark; multi-attribute value theory; power outages; time-dependent indicator; vulnerability assessment  
  Abstract The resilience mechanisms of Critical Infrastructures (CIs) are often hard to understand due to system complexity. With rising research interest, models are developed to reduce this complexity. However, these models imply reductions and limitations. According to the level of observation, models either focus on effects in a CI system or on effects in a single CI. In cases of limited resources, such limitations exclude some considerations of crisis interventions, which could be identified in combining both observation levels. To overcome these restrictions, we propose a two-step framework which enables to analyze the vulnerability of a CI and as well in comparison to other CIs. This enhances the understanding of temporal crisis impacts on the overall performance of the supply, and the crisis preparations in each CI can be assessed. The framework is applied to the demonstrating example of the functionalities of hospitals that are potentially suffering from a power outage.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1191  
Share this record to Facebook
 

 
Author (up) Gaoussou Camara; Rim Djedidi; Sylvie Despres; Moussa Lo pdf  isbn
openurl 
  Title Towards an ontology for an epidemiological monitoring system Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Disease control; Information systems; Disease spreading; Early prediction; Monitoring system; Ontological modeling; Qualitative approach; Quantitative approach; Risk predictions; Simulation; Monitoring  
  Abstract Epidemiological monitoring systems are used to control the evolution of disease spreading and to suggest action plans to prevent identified risks. In this domain, risk prediction is based on quantitative approaches that are hardly usable when data collection is not possible. In this paper, a qualitative approach based on an epidemiological monitoring ontology is proposed. We describe the design of this ontology and show how it fits into classical monitoring systems and helps overcoming limits related to quantitative approaches. © 2012 ISCRAM.  
  Address LANI, Université Gaston Berger, B.P. 234, Saint-Louis, Senegal; LIM and BIO, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny, France  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 86  
Share this record to Facebook
 

 
Author (up) Hanna Honkavuo; Markus Jähi: Ari Kosonen; Kalevi Piira; Kalev Rannat; Jari Soininen, Merik Meriste, Kuldar Taveter pdf  isbn
openurl 
  Title Enhancing the quality of contingency planning by simulation Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Contingency planning; multi-authority situation; power outage; rural areas; simulation  
  Abstract Contingency planning is a significant challenge when dealing with rarely occurring cases. First of all, the situation related threats can be difficult to identify. Moreover, it is difficult to conclude what happens when multiple threats occur simultaneously. In this paper we introduce the idea of an application which allows seamless cooperation between many experts.

In this paper we describe a computer based simulation application which is designed to support contingency planning ? having resources available ? in extreme winter condition. First we introduce the background of the simulation – sparsely populated areas in Northern Finland where long distances and extremely cold weather can make disturbance situations even more difficult to be normalized by authorities. Secondly we present the tools that are used to build up the application. Finally, we discuss what benefits the application offers for the authorities, preparedness planning and society.
 
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1193  
Share this record to Facebook
 

 
Author (up) Joaquín López-Silva; Victor A. Bañuls; Murray Turoff pdf  isbn
openurl 
  Title Scenario Based Approach for Risks Analysis in Critical Infrastructures Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Crisis Preparedness; Critical Infrastructures; Cross Impact Analysis (CIA); Resilience-Risk Analysis; Scenarios  
  Abstract This paper proposes a Cross Impact Analysis for supporting critical infrastructures risk analysis. This methodology contributes to decision-makers and planners with analytical tools for modeling complex situations. These features are generally useful in emergency management and particularly within the critical infrastructures scope, where complex scenarios for risk analysis and emergency plans design have to be analyzed. This paper will show by an example how CIA methodology can be applied for risks and identification analysis with an application to a Data Centre of a Critical Infrastructure.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1187  
Share this record to Facebook
 

 
Author (up) Joaquin Ramirez; Miguel Mendes; Santiago Monedero pdf  isbn
openurl 
  Title Enhanced forest fire risk assessment through the use of fire simulation models Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Electric supply network; fire growth potential; hazard; risk assessment; wildfire analyst  
  Abstract Forest fire risk assessment is an important task for forest fire management and planning. This paper presents current work on the definition and implementation of forest fire risk assessment models in the Wildfire AnalystTM software with the purpose of providing support and increased value in risk assessment. Three models are presented based on the concept of forest fire risk: forest fire structural hazard model that provides the assessment of the expected easiness that a fire has to spread in a certain area, a stochastic model that assesses the fire growth potential considering as potential ignition points critical elements of electric supply networks and a stochastic model that assesses the potential impact of forest fires on these infrastructures.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1192  
Share this record to Facebook
 

 
Author (up) Jose J. Gonzalez; Geir Bø; John Einar Johansen pdf  isbn
openurl 
  Title A system dynamics model of the 2005 hatlestad slide emergency management Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 658-667  
  Keywords Civil defense; Disasters; Information systems; Risk management; Societies and institutions; Emergency management; Emergent organisations; Middle-range theory; Recent researches; Self-organisation; System Dynamics; System dynamics model; Theory building; System theory  
  Abstract It has long been recognized that the management of emergencies requires that response organisations act flexibly, becoming an “emergent organisation” to better manage the fact that disasters do not follow scripts. Nevertheless, recent research shows that crisis response organisations prefer to follow patterns adequate for normal situations. Arguably, the resistance to become an emergent organisation could be related to poor understanding of how to move from disorganisation to self-organisation. We extend a recent system dynamics work by Tu, Wang and Tseng, describing the transition from disorganisation to self-organisation in the Palau case, to analyse the management of disorganisation in the fatal Hatlestad landslide in Norway. We suggest that the causal structure of the system dynamics model describing the Palau and the Hatlestad case should be considered a candidate for an emergent “middle-range theory” describing the management of disorganisation in emergencies. We propose specific data collection to test the candidate theory.  
  Address Dept. for ICT University of Agder NO-4898 Grimstad, Centre for Integrated Emergency Management, Norway  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 534  
Share this record to Facebook
 

 
Author (up) José Miguel Castillo; Starr Roxanne Hiltz; Murray Turoff pdf  isbn
openurl 
  Title Monte Carlo and decision making support in crisis management Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Decision making; Information systems; Monte Carlo methods; Crisis management; Cross-national; Decision making support; Large scale disasters; Scenario-based simulations; Simulation; Simulation process; Simulation systems; Computer simulation  
  Abstract Simulation is an interdisciplinary science applicable to many branches of knowledge. One field in which simulation is relevant is decision making support (DMS), in which we use computers to run models of real or possible scenarios in order to evaluate alternative actions before carrying them out. We will obtain a useful simulation system only when the model (engine of the simulation process) has been made accurately to represent reality. Thus it is necessary to use a methodology that helps us to construct a simulation system. This paper presents some classifications of simulation systems and an introduction to the Monte Carlo method, with the objective of creating a framework of application of this method for the construction of simulation systems for decision making support in crisis management. One area of applicability is scenario-based simulations for training for cross-national teams to cooperate in large scale disasters. The final aim of this research will be the recommendation of standards and methodologies to build simulation systems in crisis management, specifically in decision making support. © 2012 ISCRAM.  
  Address Tecnalia, Madrid, Spain; New Jersey Institute of Technology, United States  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 90  
Share this record to Facebook
 

 
Author (up) Leorey Marquez; Pawan Gamage; Dhirendra Singh; Vincent Lemiale; Trevor Dess; Peter Ashton; Luke Ryan pdf  isbn
openurl 
  Title SEEKER: A Web-Based Simulation Tool for Planning Community Evacuations Type Conference Article
  Year 2023 Publication Proceedings of the ISCRAM Asia Pacific Conference 2022 Abbreviated Journal Proc. ISCRAM AP 2022  
  Volume Issue Pages 8-24  
  Keywords Evacuation Modelling; Emergency Management; Decision Support Systems; Agent-Based Simulation  
  Abstract Bushfires cause widespread devastation in Australia, one of the most fire-prone countries on earth. Bushfire seasons are also becoming longer and outbreaks of severe bushfires are occurring more often. This creates the problem of having more people at risk in very diverse areas resulting in more difficult mass evacuations over time. The Barwon Otway region in Victoria’s Surf Coast Shire is one such area with evacuation challenges due to its limited routes in and out of coastal areas and its massive population surges during the tourist season and holiday periods. The increasing gravity of the bushfire threat to the region has brought about the Great Ocean Road Decision Support System (GOR-DSS) project, and the subsequent development of a disaster evacuation tool to support emergency management organisations assess evacuation and risk mitigation options. This paper describes the design and development of SEEKER (Simulations of Emergency Evacuations for Knowledge, Education and Response). The SEEKER tool adds another level of intelligence to the evacuation response by incorporating agent-based modelling and allows emergency management agencies to design and run evacuation scenarios and analyse the risk posed by the fire to the population and road network. Furthermore, SEEKER can be used to develop multiple evacuation scenarios to investigate and compare the effectiveness of each emergency evacuation plan. This paper also discusses the application of SEEKER in a case study, community engagement, and training.  
  Address CSIRO Data61; RMIT University; RMIT University; CSIRO Data61; DELWP; DELWP; Mount Alexander Shire Council  
  Corporate Author Thesis  
  Publisher Massey Unversity Place of Publication Palmerston North, New Zealand Editor Thomas J. Huggins, V.L.  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-0-473-66845-7 Medium  
  Track Analytical Modelling and Simulation Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2476  
Share this record to Facebook
 

 
Author (up) Maria I. G. B. Ferreira; João L. R. Moreira; Maria Luiza M. Campos; Bernardo F. B. Braga; Tiago P. Sales; Kelli de F. Cordeiro; Marcos R. S. Borges pdf  isbn
openurl 
  Title OntoEmergePlan: variability of emergency plans supported by a domain ontology Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Document Product Line; Emergency Plan; Foundational Ontology  
  Abstract The preparation of high quality emergency plans to guide operational decisions is an approach to mitigate the emergency management complexity. In such multidisciplinary scenario, teams with different perspectives need to collaborate towards a common goal and interact within a common understanding. In this scenario, the characterization of the variability of the elements involved in these plans is an important issue, which is addressed by the emergency plans generation methodology Document Product Line for Emergency Plans (DPL(EP)). To increase common understanding of plans, we propose an adaptation of this methodology by applying a well-founded emergency ontology, termed OntoEmergePlan, which supports the domain engineering phase. It is grounded in a foundational ontology, which ensures a higher consistency degree to the process of plans generation.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1184  
Share this record to Facebook
 

 
Author (up) Michael R. Bartolacci; Albena Mihovska; Dilek Ozceylan Aubrecht pdf  isbn
openurl 
  Title Optimization modeling and decision support for wireless infrastructure deployment in disaster planning and management Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 674-677  
  Keywords Base stations; Decision support systems; Disaster prevention; Disasters; Equipment; Information dissemination; Information systems; Mobile telecommunication systems; Optimization; Wireless networks; Communication solutions; Disaster planning; Optimization modeling; Real-time management; Wireless communications; Wireless infrastructure deployments; Wireless network optimizations; Wireless technologies; Wireless telecommunication systems  
  Abstract Natural disasters and emergencies create the need for communication between and among the affected populace and emergency responders as well as other parties such as governmental agencies and aid organizations. Such communications include the dissemination of key information such as evacuation orders and locations of emergency shelters. In particular, the coordination of efforts between responding organizations require additional communication solutions that typically rely heavily on wireless communications to complement fixed line infrastructure due to the ease of use and portability. While the deployment of temporary mobile networks and other wireless equipment following disasters has been successfully accomplished by governmental agencies and network providers following previous disasters, there appears to be little optimization effort involved with respect to maximizing key performance measures of the deployment or minimizing overall cost to deploy. This work does not focus on the question of what entity will operate the portable base stations or wireless equipment utilized during a disaster, only the question of optimizing placement for planning and real time management purposes. This work examines current wireless network optimization models and points out that none of them include the necessary variables for a disaster planning or emergency deployment context. Due to the fact that the choice of wireless technology impacts the nature of an overall model, a brief discussion of exemplar wireless technologies is included. The work also proposes criteria that must be taken into account in order to have a useful model for deployment of mobile base stations and related wireless communications equipment.  
  Address Penn State University, Berks, United States; CTIF-Aalborg Univerity, Denmark; Sakarya University, Turkey  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 295  
Share this record to Facebook
 

 
Author (up) Murray Turoff; Victor A. Bañuls; Linda Plotnick; Starr Roxanne Hiltz; Miguel Ramirez de la Huerga pdf  isbn
openurl 
  Title Collaborative Evolution of a Dynamic Scenario Model for the Interaction of Critical Infrastructures Type Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Collaborative Modeling; Critical Infrastructure; Cross Impact Analysis; Delphi Method; Emergency Management; Scenario Planning and Training  
  Abstract This paper reviews current work on a model of the cascading effects of Critical Infrastructure (CI) failures during disasters. Based upon the contributions of 26 professionals, we have created a reliable model for the interaction among sixteen CIs. An internal CI model can be used as a core part of a number of larger models, each of which are tailored to a specific disaster in a specific location.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1190  
Share this record to Facebook
 

 
Author (up) Nicholas Palmer; Roelof Kemp; Thilo Kielmann; Henri Bal pdf  isbn
openurl 
  Title RAVEN: Using smartphones for collaborative disaster data collection Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Database systems; Disaster prevention; Disasters; Distributed computer systems; Groupware; Information systems; Signal encoding; Smartphones; User interfaces; Android; Centralized resources; Collaborative Editing; Collaborative softwares; Data distribution; Data synchronization; Disaster management; Work in progress; Android (operating system)  
  Abstract In this paper we describe our work in progress on RAVEN, a framework, which makes it possible to build applications for collaborative editing of structured data on Android. RAVEN offers developers compile time tools, which use only the schema to generate all database handling components, edit and list user interfaces, as well as those needed for data synchronization, significantly reducing development effort. In addition, RAVEN also offers the ability to do the same work, entirely at runtime, using only a smartphone. With RAVEN it is possible to construct data oriented applications on phone at any time, including during a disaster. Users can share their applications simply by sharing the database and corresponding schema. Thus, RAVEN enables completely decentralized application creation, sharing, and data distribution, avoiding issues of connectivity to centralized resources. In this paper we show that with RAVEN it is possible to construct a new application at runtime and compare the results with an equivalent custom-built application. © 2012 ISCRAM.  
  Address VU University Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 183  
Share this record to Facebook
 

 
Author (up) Olof Görnerup; Per Kreuger; Daniel Gillblad pdf  isbn
openurl 
  Title Autonomous accident monitoring using cellular network data Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 638-646  
  Keywords Bayesian networks; Carrier mobility; Inference engines; Information systems; Sensor networks; Traffic congestion; Anomaly detection; Bayesian inference; Cellular network; Crisis management; Emergency response; Large scale sensor network; Mobile communication networks; Vehicular traffic scenarios; Accidents  
  Abstract Mobile communication networks constitute large-scale sensor networks that generate huge amounts of data that can be refined into collective mobility patterns. In this paper we propose a method for using these patterns to autonomously monitor and detect accidents and other critical events. The approach is to identify a measure that is approximately time-invariant on short time-scales under regular conditions, estimate the short and long-term dynamics of this measure using Bayesian inference, and identify sudden shifts in mobility patterns by monitoring the divergence between the short and long-term estimates. By estimating long-term dynamics, the method is also able to adapt to long-term trends in data. As a proof-of-concept, we apply this approach in a vehicular traffic scenario, where we demonstrate that the method can detect traffic accidents and distinguish these from regular events, such as traffic congestions.  
  Address Swedish Institute of Computer Science, Sweden  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 537  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: