|   | 
Details
   web
Records
Author Kerrianne Morrison; Yee-Yin Choong; Shanee Dawkins; Sandra Spickard Prettyman
Title Communication Technology Problems and Needs of Rural First Responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 817-834
Keywords Communication technology, First responders, Public safety, Rural communities, Usability
Abstract (up) Although new technology may benefit rural first responders to help them serve their communities, to date little is known about what communication technology problems rural first responders most need addressed and what future technology they desire. To explore the context of use and communication technology problems and needs of rural first responders, semi-structured interviews were conducted with 63 rural first responders across four disciplines: Communications (Comm) Center & 9-1-1 Services, Emergency Medical Services, Fire Service, and Law Enforcement. Using qualitative data analysis, interview data were sorted into problems and needs categories. Rural first responders' greatest problems were with reliable coverage/connectivity, interoperability, implementation/information technology (IT) infrastructure, and physical ergonomics. Rural first responders' greatest need for new technology was to address their current problems, but they were interested in new technology that leverages real-time technology and location tracking. Implications for researchers and developers of public safety communication technology are discussed.
Address National Institute of Standards and Technology; National Institute of Standards and Technology; National Institute of Standards and Technology; Culture Catalyst, LLC
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes kerrianne.morrison@nist.gov Approved no
Call Number ISCRAM @ idladmin @ Serial 2376
Share this record to Facebook
 

 
Author Zelenka, J.; Kasanický, T.š; Gatial, E.; Balogh, Z.; Majlingová, A.; Brodrechtova, Y.; Kalinovská, S.; Rehák, R.; Semet, Y.; Boussu, G.
Title Coordination of Drones Swarm for Wildfires Monitoring Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 144-151
Keywords Forest Fire; Wildfires; Drone; Fire Protection; Fire Monitoring
Abstract (up) As a result of climate change and global weather patterns, large forest fires are becoming more frequent in different parts of the world. The focus of the presented work is on creation of a complex coordination and communication framework for a swarm of drones specially tailored for use in preventing and monitoring of forest fires. The presented algorithm has been testing and evaluating using a computer simulation. The testing and validation in relevant environment is scheduled during a pilot demonstration exercise with real personnel and equipment, which will take place in Slovakia on April 2023. The presented work is a part of the SILVANUS EU H2020 project, whose objective is the creation of a climate resilient forest management platform for forest fire prevention and suppression. SILVANUS draws on environmental, technical, and social science experts to support regional and national authorities responsible for forest fire management in their respective countries.
Address Institute of Informatics, Slovak Academy of Sciences; Technical University in Zvolen, College of Forestry, Department of Forest Economics and Management; 3MON, Ivanská cesta 2, 82104; Thales Research and Technology
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN 2411-3387 ISBN 979-8-218-21749-5 Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/MUJT3755 Approved no
Call Number ISCRAM @ idladmin @ Serial 2513
Share this record to Facebook
 

 
Author Cámbara, G.; Grivolla, J.; Farrús, M.; Wanner, L.
Title Automatic Speech Translation for Multinational First Responder Teams Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 188-196
Keywords Automatic Speech Translation; First Responders; Disaster Management
Abstract (up) Big disasters as increasingly observed all over the world, often require the involvement of a large number of personnel, in particular personnel acting in the field, i.e., First Responders. By far not always local teams are sufficient. As a consequence, in particular in Europe, teams from different member states are dispatched to support the local teams. However, this bears a potential of miscommunication since it cannot be taken for granted that English is mastered to a sufficient degree by everybody to serve as lingua franca. In this paper, we present work in progress carried out in the context of the INGENIOUS project on an automatic speech translation module that facilitates the interaction between First Responders speaking different languages. The module is embedded into the Telegram Messenger Application and consists of three main modules: Automatic Speech Recognition, Machine Translation, and Text-to-Speech, which are applied in sequence. We opt for a pipeline solution instead of end-to-end speech translation in order to guarantee the availability of the original speech transcriptions and their translations.
Address Pompeu Fabra University; University of Barcelona; Catalan Institute for Research and Advanced Studies (ICREA) and NLP Group, Pompeu Fabra University
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/RPZH2519 Approved no
Call Number ISCRAM @ idladmin @ Serial 2517
Share this record to Facebook
 

 
Author Lennart Landsberg; Alexandra Braun; Ompe Aimé Mudimu; Klaus-Dieter Büttgen
Title Considering end user needs when developing new technologies – a new plug and play sensor technology for locating trapped victims Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 922-928
Keywords Search and Rescue, UAV, Multi Sensors, Requirement Analysis, Building Collapse
Abstract (up) Building collapses often happen unexpectedly and suddenly. Consequently, people are often buried under the debris. What follows is a complicated search by first responders, which is characterized by time pressure and danger. In the research project SORTIE, a modular and UAV-based technical system is being developed to support the first responders in their search efforts. During the first phase of this project, an extensive requirements analysis was conducted with the involvement of end users. This ensures that the developed technology meets the requirements for later use under realistic circumstance. The project consortium has good experience with this operational approach and is in close cooperation with end users who are part of the consortium. In addition to a comprehensive understanding of building collapses and prevailing conditions, the technical partners were also able to identify requirements that they might not have discovered without the involvement of end users and the appropriate methods.
Address TH Köln – University of Applied Sciences; Federal Agency for Technical Relief; TH Köln – University of Applied Sciences; Federal Agency for Technical Relief
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes lennart_walter.landsberg@th-koeln.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2384
Share this record to Facebook
 

 
Author Tiina Ristmae; Dimitra Dionysiou; Miltiadis Koutsokeras; Athanasios Douklias; Eleftherios Ouzounoglou; Angelos Amditis; Anaxagoras Fotopoulos; George Diles; Pantelis Linardatos; Konstantinos Smanis; Pantelis Lappas; Marios Moutzouris; Manolis Tsogas; Dani
Title The CURSOR Search and Rescue (SaR) Kit: an innovative solution for improving the efficiency of Urban SaR Operations Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 867-880
Keywords Urban Search and Rescue, Victim detection, Rescue robotics, Sensors, Situational awareness
Abstract (up) CURSOR (Coordinated Use of miniaturized Robotic equipment and advanced Sensors for search and rescue OpeRations) is an ongoing European H2020 project with the main objective to enhance the efficiency and safety of Urban Search and Rescue (USaR) operations on disaster sites. CURSOR's approach relies on the integration of multiple mature and emerging technologies offering complementary capabilities to an USaR system, so as to address several challenges and capability gaps currently encountered during first responder missions. The project's research and development are structured around an earthquake master scenario. CURSOR aspires to advance the state-of the-art in several key aspects, including reduced time for victim detection, increased victim localization accuracy, enhanced real-time worksite information management, improved situational awareness and rescue team safety.
Address Federal Agency for Technical Relief (THW) – Headquarters Staff Unit Research & Innovation Management; Institute of Communication and Computer Systems – National Technical University of Athens; Institute of Communication and Computer Systems – National Tec
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes Tiina.Ristmaee@thw.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2379
Share this record to Facebook
 

 
Author K. K. Ramakrishnan; Murat Yuksel; Hulya Seferoglu; Jiachen Chen; Roger A. Blalock
Title Resilient Communication for First Responders in Disaster Management Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 903-912
Keywords Disaster Management, Information-Centric Networking, Namespace Design, D2D Communication, Coding
Abstract (up) Effective communication among first responders during and in the aftermath of a disaster can affect outcomes dramatically. In this paper, we discuss the design of a resilient architecture that enables effective first responder communications even in such challenging scenarios. Our ReDiCom (Resilient Disaster Communications) network architecture builds resilience into the framework across all the layers. The information layer allows communication by roles and identities instead of addresses to support communication among dynamically formed first responder teams. The network layer provides robust and resilient communication even when facilities are error- and disruption-prone. The coded communication and computation further improve resilience and enable efficient data processing in disaster management.
Address University of California, Riverside; University of Central Florida; University of Illinois at Chicago; WINLAB, Rutgers University; NIST
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes jiachen@winlab.rutgers.edu Approved no
Call Number ISCRAM @ idladmin @ Serial 2382
Share this record to Facebook
 

 
Author Osaragi, T.; Suematsu, T.; Oki, T.; Kakizaki, A.
Title Local Disaster Mitigation Technology with Travel Support Application Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 112-125
Keywords Travel Support Application; Rescue Activity; Multiple Traveling Salesman Problem; Field Experiment
Abstract (up) Efficient and rapid rescue activities are vital in the immediate aftermath of a large-scale disaster. However, the locations of the tasks requested (e.g. rescues, relief, special care, and assistance) and those who support, assist, or respond are often spatially separated. In this paper, we developed a Web application (travel support application) to support the efficient travel of responders by integrating a method of optimizing travel and navigation for rescue activities and a system of real-time disaster information collection and sharing. We then demonstrated the efficiency of the travel support application through some field experiments. Also, we conducted a demonstration experiment assuming a flood disaster at the crisis management office of a local government. Finally, the possibility of using the developed system at non-emergencies was examined to address the common problem of disaster prevention systems.
Address University at Albany
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/EKEQ4568 Approved no
Call Number ISCRAM @ idladmin @ Serial 2511
Share this record to Facebook
 

 
Author Holzhüter, M.; Huhle, G.; Reuter-Oppermann, M.; Hellriegel, J.; Klafft, M.
Title Acceptance study on application systems to improve situational incident management through bi-directional communication between citizens and decision-makers in emergencies and crises situations Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 197-207
Keywords Emergency Control Centre; Situational Awareness; Acceptance of ICT; Population; Crowdsourcing; Video Support; Bidirectional Communication
Abstract (up) Efficient hazard prevention and disaster control depend on situational awareness. Situational information is – among others – provided by citizens on the ground. Disaster managers are often reluctant to use such information on a large scale or in a systematic way for fear of being overwhelmed by information overload in a stressful crisis. New information technologies for crisis management are strongly dependent on the acceptance of the people using them and can only be successful as socio-technical systems. Therefore, 354 employees of public and private emergency operation centres as well as members of crisis management teams were asked to assess different information sharing technologies. 504 people from the public responded to an online survey about their willingness to use such technologies. The results indicate a high level of acceptance by both user groups for bi directional communication technologies for situation management and the improvement of situational awareness.
Address Fraunhofer FOKUS; COREVAS GmbH & CO.KG; Technische Universität Darmstadt; Fraunhofer FOKUS; Fraunhofer FOKUS
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/ZLXU9879 Approved no
Call Number ISCRAM @ idladmin @ Serial 2518
Share this record to Facebook
 

 
Author Henrique Romano Correia; Ivison da Costa Rubim; Angelica F.S. Dias; Juliana B.S. França; Marcos R.S. Borges
Title Drones to the Rescue: A Support Solution for Emergency Response Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 904-913
Keywords Emergency, Information System, Collaborative Systems, Decision-making Drones.
Abstract (up) Emergency is a threatening condition that requires urgent action, an effective response and within an emergency scenario there may be risks for responders, as well as for those affected. Response time is crucial for affected individuals and environments to be addressed on their needs. In this context, the goal of this work is to support the agents involved in the emergency response, through an application-supported collaborative solution using drones. This solution aims to collect information from the worked emergency scenario, so that, through the collaboration of specialists, there is a greater support for the decision-making made by the responsible agents within this scenario, causing it to occur in a shorter time, thus speeding up the response to the emergency. In this work, the aim was to validate with experts from the Rio de Janeiro Firefighters, who already work with drones, by evaluating the utility of the solution in real scenarios.
Address Department of Computer Science – Universidade Federal do Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil; Department of Computer Science – Federal Rural University of Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil, TECNUN, University of Navarra, Donostia, San Sebastián, Spain
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-80 ISBN 2411-3466 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes henriquercorreia@gmail.com Approved no
Call Number Serial 2281
Share this record to Facebook
 

 
Author LaLone, N.; Dugas, P.O.T.; Semaan, B.
Title The Crisis of Designing for Disaster: How to Help Emergency Management During The Technology Crisis We Created Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 126-143
Keywords Crisis Informatics; Participatory Design; Ethnography Emergency Management; Please Stop Trying to Make Fetch Happen
Abstract (up) Emergency Management (EM) is experiencing a crisis of technology as technologists have attempted to innovate standard operating procedures with minimal input from EM. Unsurprisingly, there has yet to be a success. Instead, technologists have focused on consumer culture and fostered a slow-moving crisis as the gap between what consumers and EM can do is deep. At present, the most ubiquitous aspect of technology in disaster is its capacity to exacerbate response, create new kinds of disaster, and create consumer expectations that EM cannot meet. In the present work, we highlight how and why technological production needs to shift its ontological premises dramatically to meet the needs of technology for first responders. From supporting practice to taking a few steps back from the bleeding edge, we offer a range of suggestions based on the technological capacities of emergency management in the present and in the future.
Address University of Nebraska at Omaha; New Mexico State University; University of Colorado Boulder Affiliation
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/IUGT6097 Approved no
Call Number ISCRAM @ idladmin @ Serial 2512
Share this record to Facebook
 

 
Author Spyros Chrysanthopoulos; Theofanis Kapetanakis; Giannis Chaidemenos; Stelios Vernardos; Harris Georgiou; Claudio Rossi
Title Emergency Response in Recent Urban/Suburban Disaster Events in Attica: Technology Gaps, Limitations and Lessons Learned Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 984-989
Keywords First Responders, Search and Rescue, Flash Flood, Urban Wildfire, Urban Operations.
Abstract (up) Emergency response operations in large-scale urban/suburban disaster events is often addressed by the standard protocols and international guidelines for collapsed buildings, heavy debris, etc. However, a wide range of First Responder (FR) operations need to address various other contexts, work environments and hazards. In this paper, two real disaster events are explored as use cases for such urban/suburban FR operations, namely a flash flood and a wildfire, both in Attica, Greece (2017-2018). Based on our team's experience from these mobilizations and active participation in both these events as FR actor in the field, we present the challenges, the complexity of such multi-aspect disaster events, the limitations of emergency response, the technology gaps of the FR teams, as well as the lessons learned during these deployments. Finally, we make some notes on future prospects and possible advancements in tools and technologies that would greatly enhance the operational safety and readiness of the FR teams in such events.
Address Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); LINKS Foundation
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-88 ISBN 2411-3474 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes harris@xgeorgio.info Approved no
Call Number Serial 2289
Share this record to Facebook
 

 
Author Ana Maria Aldea Reyes; Marta Burgos Gonzalez; Susana Izquierdo Funcia
Title Ethics in Catastrophes, Extraordinary Decisions Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 814-819
Keywords Ethics; research; European projects; Ethics Board
Abstract (up) European research projects take ethical aspects into central consideration. In this extended abstract we have developed the methodology of the Search and Rescue (SnR) project and research made in relation to the ethical aspects of animal welfare.
Address Spanish School of Rescue and Detection with Dogs (ESDP);Spanish School of Rescue and Detection with Dogs (ESDP);Spanish School of Rescue and Detection with Dogs (ESDP)
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2457
Share this record to Facebook
 

 
Author Debora Robles Perez; Manuel Esteve Domingo; Israel Perez Llopis; Federico J. Carvajal Rodrigo
Title System and Architecture of an Adapted Situation Awareness Tool for First Responders Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 928-936
Keywords Critical Infrastructure Protection; First Responder; Command and Control; Autonomous Vehicles; Resilience
Abstract (up) First responders (FRs) in Europe are currently facing large natural and man-made disasters (e.g. wild fire, terrorist attacks, industrial incidents, big floods, gas leaks etc.), that put their own lives and those of thousands of others at risk. Adapted situation awareneSS tools and taIlored training curricula for increaSing capabiliTies and enhANcing the proteCtion of first respondErs (ASSISTANCE) is an ongoing European H2020 project which main objective is to increase FRs Situation Awareness (SA) for helping and protecting different kinds of FRs' organizations that work together in large scale disasters mitigation. ASSISTANCE will enhance the SA of the FRs organisations during their mitigation activities through the integration of new paradigms, tools and technologies (e.g. drones/robots equipped with a range of sensors, robust communications capabilities, etc.) with the main objective of increasing both their protection and their efficiency.
Address Universitat Politècnica de València; Universitat Politècnica de València; Universitat Politècnica de València; Universitat Politècnica de València
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-83 ISBN 2411-3469 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes derobpe@upvnet.upv.es Approved no
Call Number Serial 2284
Share this record to Facebook
 

 
Author Ophélie Morand; Caroline Rizza; Stéphane Safin; Robert Larribau
Title Improving Cardiopulmonary Resuscitation by Building Trust between Dispatchers and Citizens through Simulation Workshop Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 791-802
Keywords OHCA; survival chain; engaging bystanders; trust; living-lab; apps
Abstract (up) Improving the survival rate of Out-of-Hospital Cardiac Arrest (OHCA) remains an important public health issue. Indeed, current survival rates are approximately 10% and can be significantly enhanced by early Cardiopulmonary reanimation (CPR) and early defibrillation. Bystanders are most likely to perform these acts, but few resources (such as digital apps) are dedicated to them due to a lack of confidence in their abilities from them and from the professionals. In order to build trust and collaboration between the dispatchers and the bystanders, an OHCA simulation workshop was conducted involving the whole survival chain. The main idea consisted in getting the participants to interact via an application dedicated to bystanders which provided a CPR demonstration video. The aim was to analyze the effects of this video on the CPR itself and especially on the lived-experience of the participants. A further objective was to assess how the shared workshop would affect the relationship between the stakeholders.
Address Télécom Paris IPP I3, CNRS (UMR 9217) ; Télécom Paris IPP I3, CNRS (UMR 9217) ; Télécom Paris IPP I3, CNRS (UMR 9217) ; HUG, Emergency Department, HUG
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2456
Share this record to Facebook
 

 
Author Samuel Auclair; Christian Iasio; reï Balgiu; Antoni Blasquez; Jean-Christophe Castagnos; Emilie Crochet; Olivier Dalverny; Xavier Goula; Paco Martinez; Philippe Méresse; Philippe Soulé-Péré; Ghislaine Verrhiest-Leblanc
Title Post-earthquake Damage Assessment: Feedback from a Cross-Border Crisis Exercise Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 1000-1007
Keywords Crisis exercise; Earthquake; Post-earthquake damage assessment; Cross-border disaster management; Crisis management digital platform
Abstract (up) In November 2021, a large-scale crisis exercise was organized in the heart of the Pyrenees. The main objective of this cross-border exercise between France, Spain and Andorra was to allow practitioners to prepare for a largescale earthquake, by testing the contribution of the tools developed within the framework of the European project POCRISC. Among the different functions activated during the exercise, this article focuses on the particularly critical function of emergency assessment of building damage. It analyses the feedback from the exercise participants asked to evaluate the deployment, coordination and operation of the damage assessment function, including the use of a tool developed specifically for these activities.
Address BRGM; BRGM; AFPS; ACE; Préfecture of the Hautes-Pyrénées; French Civil Protection; ENIT;ACE,AFPS; DeveryWare; Entente Valabre; SDIS-65; AFPS
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2465
Share this record to Facebook
 

 
Author Benjamin Barth; Govinda Chaithanya Kabbinahithilu; Alexandros Bartzas; Spyros Pantazis; Tomaso deCola
Title A Content Oriented Information Sharing System for Disaster Management Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 922-927
Keywords Information Sharing, Preparation, Response, Content Oriented.
Abstract (up) In response to natural and man-made hazards multiple organisations usually are involved in a very complex situation. On the other hand, extreme weather situations due to the climate change create hazards in areas which were considered safe before. In order to improve the capabilities of involved organisations in responding and preparing for disaster events, the availability of an efficient information sharing approach is a key enabler. To this end, we propose a communication system based on a content oriented architecture tailored to disaster management. It includes a catalogue that is offering web services for publishing and subscribing of disaster information and for further collaboration amongst agencies and first responders. Moreover, the considered approach also allows for full content access control and enables a flexible system. The paper shows the current status of the system design. Next steps will include the implementation and evaluation of the approach.
Address German Aerospace Center (DLR); German Aerospace Center (DLR); Space Hellas S.A.; Space Hellas S.A.; German Aerospace Center (DLR)
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-82 ISBN 2411-3468 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes Benjamin.Barth@dlr.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2283
Share this record to Facebook
 

 
Author Dahlke, D.; Kaiser, S.; Bayer, S.
Title Self-Localization: A proposal to equip first responders with a robust and accurate GNSS device Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 242-251
Keywords Self-Localization; GNSS; First Responder Localization; Multi Frequency GNSS; Multi Constellation GNSS
Abstract (up) In this paper we explore the GNSS positioning capabilities in the context of search and rescue operations. Our contribution is a tool that robustly receives and precisely evaluates GNSS signals. The final positioning information is then transmitted to an orchestrator where other tools like augmented reality utilities or the command and control have access to. During the time from the project start in September 2021 to December 2022 the components have been chosen, and the design and software of the tool have been developed. Furthermore, some of the tool’s capabilities have been tested and compared during field trials with first responders and measurement campaigns. The developed tool outperforms the commonly used smartphone localization in terms of accuracy, operation time and time to get a GNSS fix. This reliability improvement helps to identify someones position in adverse conditions.
Address DLR German Aerospace Center; DLR German Aerospace Center; I.S.A.R. Germany
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/QQLO9872 Approved no
Call Number ISCRAM @ idladmin @ Serial 2522
Share this record to Facebook
 

 
Author Claudio Paliotta; Klaus Ening; Sigurd Mørkved Albrektsen
Title Micro indoor-drones (MINs) for localization of first responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 881-889
Keywords Micro indoor-drones, Indoor localisation, Swarm
Abstract (up) In this paper, we describe our approach to the localization in GNSS-denied and risky unknown environments offirst responders (FRs). The INGENIOUS project is an EU funded project which is developing a new integratedtoolkit to support the operations of FRs. The micro indoor-drones (MINs) developed within the INGENIOUSproject represent a component of the toolkit which will support the localization of FRs in search-and-rescue (SAR)operations. In this paper, the concept behind the MINs and the current achievements are illustrated.
Address SINTEF Digital; SINTEF Digital; SINTEF Digital
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes claudio.paliotta@sintef.no Approved no
Call Number ISCRAM @ idladmin @ Serial 2380
Share this record to Facebook
 

 
Author Sofie Pilemalm
Title Barriers to Digitalized Co-production: the Case of Volunteer First Responders Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 782-790
Keywords digitalization; co-production; ICT; volunteers; emergency response
Abstract (up) Information and communication technology (ICT) and digitalization are often seen as enablers of co-production. But if its potential is not implemented, technology will rather act as a barrier. In Sweden, new types of “hybrid” co-production initiatives that engage civil citizen volunteers as first responders emerged a decade ago. Even though the benefits are recognized, the initiatives’ expansion are hampered by the ICT solutions. In this study, we explore why, by comparing the perspectives of national authorities, needs-owners, suppliers, and end-users. We describe the barriers, e.g., insufficient geofencing, to develop ICT for various mobile platforms, unavailability of a joint API, competitiveness and double roles among stakeholders, and ICT costs. We suggest how to address the barriers and argue that digitalized co-production of the type presented will likely increase. Here our study can contribute to the successive accumulation of knowledge.
Address Department of Science and Technology, Linköping university, Department of Information Systems, University of Agder
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2455
Share this record to Facebook
 

 
Author Gkika, I.; Pattas, D.; Konstantoudakis, K.; Zarpalas, D.
Title Object detection and augmented reality annotations for increased situational awareness in light smoke conditions Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 231-241
Keywords Image Processing; Smoke; Augmented Reality; Deep Learning; Situational Awareness
Abstract (up) Innovative technologies powered by Computer Vision algorithms can aid first responders, increasing their situ ational awareness. However, adverse conditions, such as smoke, can reduce the efficacy of such algorithms by degrading the input images. This paper presents a pipeline of image de-smoking, object detection, and augmented reality display that aims to enhance situational awareness in smoky conditions. A novel smoke-reducing deep learning algorithm is applied as a preprocessing step, before state-of-the-art object detection. The detected objects and persons are highlighted in the user’s augmented reality display. The proposed method is shown to increase detection accuracy and confidence. Testing in realistic environments provides an initial evaluation of the method, both in terms of image processing and of usefulness to first responders.
Address Information Technologies Institute; Information Technologies Institute; Information Technologies Institute; Information Technologies Institute
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/YOMA9043 Approved no
Call Number ISCRAM @ idladmin @ Serial 2521
Share this record to Facebook
 

 
Author Aikaterini Christodoulou; John Lioumbas; Kostantinos Zambetoglou; Nikoletta Xanthopoulou
Title Combined innovative technologies for ensuring water safety in utilities: The city of Thessaloniki case study Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 929-934
Keywords Water safety, satellite images, drones, risk assessment
Abstract (up) Innovative technologies such as monitoring the quality of surface water aquifers with satellite images, applying UAV (Unmanned Aerial Vehicle) and drone technology for a variety of operations, water quality measurements with improved techniques along with IoT (Internet of Things) and ICT (Information and Communication Technologies), can provide sufficient data for enhancing water safety in urban water utilities. Specifically, these data could be an effective tool for improving risk assessment process and management of water supply systems. Nevertheless, till now, there is a relative lack of published works that validate the efficiency of combing these technologies on water safety processes by incorporating most of them with a systematic way and during real working conditions in water utilities. This work aims to present the preliminary design concept of a platform that embraces innovating water safety technologies planned to be applied to Thessaloniki's Water Supply and Sewerage Co. S.A Standard Operating Procedures (SOP).
Address Thessaloniki Water Supply and Sewerage Co. S.A (EYATH SA); Thessaloniki Water Supply and Sewerage Co. S.A (EYATH SA); Thessaloniki Water Supply and Sewerage Co. S.A (EYATH SA); Thessaloniki Water Supply and Sewerage Co. S.A (EYATH SA)
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes catchristo@eyath.gr Approved no
Call Number ISCRAM @ idladmin @ Serial 2385
Share this record to Facebook
 

 
Author Christoph Lamers
Title Electronic Visualization for Situational Awareness in Control Rooms Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 1008-1011
Keywords Situational Awareness; Situation Map; Command and Control; Visualization
Abstract (up) It is generally agreed in crisis management that a comprehensive visualization of the situation is crucial for an appropriate situational awareness of the staff personnel in control rooms. Therefore an expert group of fire officers in the German State North Rhine Westphalia developed a system for this purpose known as the “tactical wall”. The core of the system is a situation map of the relevant area with so-called tactical signs, i. e. defined graphic symbols for hazards, response units and tactical measures. Moreover, the assignment of response units to tactical sectors or staging areas as well as other relevant information such as the management organization is displayed at defined places within the wall. While the system was purely manual in its original version, a new digital version was recently developed. The user interfaces of this system are web-based and can by intuitively operated after a minor training effort.
Address State Fire Service Institute North Rhine Westphalia
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2466
Share this record to Facebook
 

 
Author Paulini, M.S.; Duran, D.; Rice, M.; Andrekanic, A.; Suri, N.
Title KENNEL Threat Detection Boxes for First Responder Situational Awareness and Risk Management Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 208-219
Keywords Situational Awareness; Hazard Detection; Microsensors; Sensor Fusion; Risk Management
Abstract (up) KENNEL is a deployable IoT-based system consisting of a network of unattended ground sensors, known as Threat Detection Boxes (TDBs), which may be outfitted with any variety of custom and commercial-off-the-shelf sensors for hazard detection. The KENNEL system fills a technological gap for sensor fusion, interpretation, and real-time alerting via existing information management systems, such as Team Awareness Kit (TAK). First responders face a critical need for improved situational awareness, detection, and response to hazardous events. KENNEL provides a first of its kind, low-cost sensing & data fusion platform that is highly extensible, configurable, and self-sustaining, opening a world of modernization and innovation possibilities across the first responder domain. TDBs may also be statically or ad hoc deployed, improving flexibility, stand-off hazard detection, and resilience in the operational domain. From critical infrastructure monitoring to wearables, the system affords timeliness of critical information for effective risk management and increased personnel safety.
Address Air Force Research Laboratory (AFRL/RISD); Institute for Human and Machine Cognition; Institute for Human and Machine Cognition; Air Force Research Laboratory (AFRL/RISD); Institute for Human and Machine Cognition
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/PCYP5515 Approved no
Call Number ISCRAM @ idladmin @ Serial 2519
Share this record to Facebook
 

 
Author Balogh, Z.; Gatial, E.; Dolatabadi, S.H.; Dlugolinský, Štefan; Saltarella, M.; Scipioni, M.P.; Grunwald, D.; Przybyszewski, M.P.; Majlingova, A.; Brodrechtova, Y.; Mojir, K.Y.; Olson, N.; Levak, J.; Chandramouli, K.
Title Communication Protocol for using Nontraditional Information Sources between First Responders and Citizens during Wildfires Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 152-165
Keywords Communication Protocol; Wildfires; Forest Fires; Drones; Mesh in the Sky; Emergency Response; First Responders
Abstract (up) One of the biggest challenges faced during the wildfires is communication. A specific case represents the need to establish communication between first responders and the public. This paper presents a proposal for a generic protocol to ensure effective communication between fire fighters and many citizens at the incident site or in the surrounding area using nontraditional information sources such as a dedicated mobile app or social media. Specific challenges, concepts and technologies relevant to such communication are described specifically customized for forest fires and wildfires. The protocol itself is provided by proposing information flows between the involved actors. Moreover, several technologies including a Citizen Engagement Mobile App, an Edge Micro Data Center for forward command centers, a Mesh in the Sky communication infrastructure or a Dashboard integrating and displaying all the data in one place is shortly introduced. The presented paper is a work in progress.
Address Institute of Informatics, Slovak Academy of Sciences in Bratislava; Fincons SpA; ITTI Sp. z o.o.; Technical University in Zvolen; Swedish School of Library and Information Science, University of Borås; RiniGARD; Queen Mary University of London, United Kingdom
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN 2411-3387 ISBN 979-8-218-21749-5 Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/YIJK9098 Approved no
Call Number ISCRAM @ idladmin @ Serial 2514
Share this record to Facebook
 

 
Author Michael Holzhüter; Ulrich Meissen
Title A Decentralized Reference Architecture for Interconnected Systems in Emergency Management Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 961-972
Keywords Civil Protection; Emergency Management; Interoperability; Interconnected Collaboration; Resilient Architecture
Abstract (up) Optimal communication and information exchange are key elements for handling complex crises or disaster situations. With the increasing number of heterogeneous ICT systems, also raises the importance of adequate support for interconnectivity and information logistics between stakeholders to thoroughly gather information and to make quick but precise decisions. The main purpose of the information exchange is then to manage the crisis as quickly as possible, to provide full information to protect first responders' health and safety, to optimally dispatch resources, and to ensure coordination between different relief forces. Based on an end user survey with a particular focus on first responders, this paper introduces an evolutionary architecture to enable information exchange in crises situation or disasters. The aim is to provide a decentralized approach among heterogeneous ICT-systems which abstracts from the underlying communication technologies and heterogeneity of connected systems and fulfills the functional and non-functional requirements from end users.
Address Hochschule für Technik und Wirtschaft Berlin; Fraunhofer-Institut für Offene Kommunikationssysteme; Hochschule für Technik und Wirtschaft Berlin; Fraunhofer-Institut für Offene Kommunikationssysteme
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-86 ISBN 2411-3472 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes michael.holzhueter@fokus.fraunhofer.de Approved no
Call Number Serial 2287
Share this record to Facebook