|   | 
Details
   web
Records
Author Tolt, G.; Rydell, J.; Tulldahl, M.; Holmberg, M.; Karlsson, O.; Bissmarck, F.
Title The MAX Drone for Autonomous Indoor Exploration Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 220-230
Keywords UAV; Exploration; Navigation; Positioning; Autonomy
Abstract This paper presents the concept and prototype implementation of a drone for Multi-purpose Autonomous eXploration of indoor environments – MAX. The purpose of MAX is to support first responders in the difficult task of assessing unknown and potentially dangerous or hostile situations in indoor or underground environments. The approach for addressing challenges associated with this task has been to construct a custom-designed drone based on requirements and conditions of first responder missions. This paper reports on the first phase of development of the MAX drone, aimed for experimentation with autonomy functionality in first responder contexts and for enabling further development of advanced higher-level planning functions. It describes the overall design of the MAX drone, its capabilities in terms of robust positioning and autonomous mission execution, along with the status of key enabling algorithms for exploration, such as target point selection and path planning.
Address (up)
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/LYTB7325 Approved no
Call Number ISCRAM @ idladmin @ Serial 2520
Share this record to Facebook
 

 
Author Paulini, M.S.; Duran, D.; Rice, M.; Andrekanic, A.; Suri, N.
Title KENNEL Threat Detection Boxes for First Responder Situational Awareness and Risk Management Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 208-219
Keywords Situational Awareness; Hazard Detection; Microsensors; Sensor Fusion; Risk Management
Abstract KENNEL is a deployable IoT-based system consisting of a network of unattended ground sensors, known as Threat Detection Boxes (TDBs), which may be outfitted with any variety of custom and commercial-off-the-shelf sensors for hazard detection. The KENNEL system fills a technological gap for sensor fusion, interpretation, and real-time alerting via existing information management systems, such as Team Awareness Kit (TAK). First responders face a critical need for improved situational awareness, detection, and response to hazardous events. KENNEL provides a first of its kind, low-cost sensing & data fusion platform that is highly extensible, configurable, and self-sustaining, opening a world of modernization and innovation possibilities across the first responder domain. TDBs may also be statically or ad hoc deployed, improving flexibility, stand-off hazard detection, and resilience in the operational domain. From critical infrastructure monitoring to wearables, the system affords timeliness of critical information for effective risk management and increased personnel safety.
Address (up) Air Force Research Laboratory (AFRL/RISD); Institute for Human and Machine Cognition; Institute for Human and Machine Cognition; Air Force Research Laboratory (AFRL/RISD); Institute for Human and Machine Cognition
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/PCYP5515 Approved no
Call Number ISCRAM @ idladmin @ Serial 2519
Share this record to Facebook
 

 
Author Henry Agsten
Title Effects of Smartphone-Based Alerting on Reducing Arrival Times for Volunteer Fire Departments Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 990-994
Keywords Volunteer Fire Departments; Time Reduction; Inefficiencies; Smartphone Application
Abstract This practitioner paper describes the efforts of a volunteer fire department in Germany to reduce the time to arrive at a place of emergency. It presents the former situation, identifies reasons for delays and highlights the volunteers' first years in utilizing an existing smartphone application for alert and response as a mean to optimize their times of arrival. The paper finally evaluates the effects of the application's usage.
Address (up) Alarm Dispatcher Systems GmbH,Dresden, Germany
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-89 ISBN 2411-3475 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes ha@alarm-dispatcher.de Approved no
Call Number Serial 2290
Share this record to Facebook
 

 
Author Samuel Auclair; Christian Iasio; reï Balgiu; Antoni Blasquez; Jean-Christophe Castagnos; Emilie Crochet; Olivier Dalverny; Xavier Goula; Paco Martinez; Philippe Méresse; Philippe Soulé-Péré; Ghislaine Verrhiest-Leblanc
Title Post-earthquake Damage Assessment: Feedback from a Cross-Border Crisis Exercise Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 1000-1007
Keywords Crisis exercise; Earthquake; Post-earthquake damage assessment; Cross-border disaster management; Crisis management digital platform
Abstract In November 2021, a large-scale crisis exercise was organized in the heart of the Pyrenees. The main objective of this cross-border exercise between France, Spain and Andorra was to allow practitioners to prepare for a largescale earthquake, by testing the contribution of the tools developed within the framework of the European project POCRISC. Among the different functions activated during the exercise, this article focuses on the particularly critical function of emergency assessment of building damage. It analyses the feedback from the exercise participants asked to evaluate the deployment, coordination and operation of the damage assessment function, including the use of a tool developed specifically for these activities.
Address (up) BRGM; BRGM; AFPS; ACE; Préfecture of the Hautes-Pyrénées; French Civil Protection; ENIT;ACE,AFPS; DeveryWare; Entente Valabre; SDIS-65; AFPS
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2465
Share this record to Facebook
 

 
Author Samuel Auclair; Pierre Gehl; Mickael Delatre; Christophe Debray; Philippe Méresse
Title In-depth Analysis of Practitioners' Perceptions about Seismic Early Warning Prior to Aftershocks: The Point of View of the USAR Community Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 740-754
Keywords Earthquake early warning; aftershock; search and rescue; USAR; INSARAG
Abstract Urban Search and Rescue (USAR) teams are particularly exposed to the risk of collapse of buildings due to aftershocks, making concept of earthquake early warning (EEW) particularly interesting. In addition to scientific advances in EEW, it is crucial to understand what are the real expectations and needs of USAR teams, and to what extent EEW solutions could meet them. In this study, we conduct a survey to collect insights from USAR rescuers: it highlights that aftershocks are a major concern for them. In this context, we find that the concept of EEW is very favorably received by the respondents, who consider different types of possible actions upon receipt of an early warning. This study provides a basis for the functional specifications of future solutions of EEW useful to all USAR teams, as well as for the definition of their modalities of engagement on the field.
Address (up) BRGM; BRGM; French Ministry of the Interior, Directorate General for Civil Security and Crisis Management; Entente Valabre; BRGM
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2452
Share this record to Facebook
 

 
Author Dimitrios Sainidis; Dimitrios Tsiakmakis; Konstantinos Konstantoudakis; Georgios Albanis; Anastasios Dimou; Petros Daras
Title Single-Handed Gesture UAV Control and Video Feed AR Visualization for First Responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 835-848
Keywords First responders, UAV, gesture control, augmented reality
Abstract Unmanned Aerial Vehicles (UAVs) are becoming increasingly widespread in recent years, with numerous applications spanning multiple sectors. UAVs can be of particular benefit to first responders, assisting in both hazard detection and search-and-rescue operations, increasing their situational awareness without endangering human personnel; However, conventional UAV control requires both hands on a remote controller and many hours of training to control efficiently. Additionally, viewing the UAV video-feed on conventional devices (e.g. smartphones) require first responders to glance downwards to look at the screen, increasing the risk of accident. To this end, this work presents a unified system, incorporating single-hand gesture control for UAVs and an augmented reality (AR) visualization of their video feed, while also allowing for backup remote UAV control from any device and multiple-recipient video streaming. A modular architecture allows the upgrade or replacement of individual modules without affecting the whole. The presented system has been tested in the lab, and in field trials by first responders.
Address (up) Centre for Research & Technology Hellas (CERTH); Centre for Research & Technology Hellas (CERTH); Centre for Research & Technology Hellas (CERTH); Centre for Research & Technology Hellas (CERTH); Centre for Research & Technology Hellas (CERTH); Centre for
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes dsainidis@iti.gr Approved no
Call Number ISCRAM @ idladmin @ Serial 2377
Share this record to Facebook
 

 
Author Henrique Romano Correia; Ivison da Costa Rubim; Angelica F.S. Dias; Juliana B.S. França; Marcos R.S. Borges
Title Drones to the Rescue: A Support Solution for Emergency Response Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 904-913
Keywords Emergency, Information System, Collaborative Systems, Decision-making Drones.
Abstract Emergency is a threatening condition that requires urgent action, an effective response and within an emergency scenario there may be risks for responders, as well as for those affected. Response time is crucial for affected individuals and environments to be addressed on their needs. In this context, the goal of this work is to support the agents involved in the emergency response, through an application-supported collaborative solution using drones. This solution aims to collect information from the worked emergency scenario, so that, through the collaboration of specialists, there is a greater support for the decision-making made by the responsible agents within this scenario, causing it to occur in a shorter time, thus speeding up the response to the emergency. In this work, the aim was to validate with experts from the Rio de Janeiro Firefighters, who already work with drones, by evaluating the utility of the solution in real scenarios.
Address (up) Department of Computer Science – Universidade Federal do Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil; Department of Computer Science – Federal Rural University of Rio de Janeiro, Brazil; Post-graduation Program in Informatics (PPGI) – Universidade Federal do Rio de Janeiro, Brazil, TECNUN, University of Navarra, Donostia, San Sebastián, Spain
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-80 ISBN 2411-3466 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes henriquercorreia@gmail.com Approved no
Call Number Serial 2281
Share this record to Facebook
 

 
Author Sofie Pilemalm
Title Barriers to Digitalized Co-production: the Case of Volunteer First Responders Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 782-790
Keywords digitalization; co-production; ICT; volunteers; emergency response
Abstract Information and communication technology (ICT) and digitalization are often seen as enablers of co-production. But if its potential is not implemented, technology will rather act as a barrier. In Sweden, new types of “hybrid” co-production initiatives that engage civil citizen volunteers as first responders emerged a decade ago. Even though the benefits are recognized, the initiatives’ expansion are hampered by the ICT solutions. In this study, we explore why, by comparing the perspectives of national authorities, needs-owners, suppliers, and end-users. We describe the barriers, e.g., insufficient geofencing, to develop ICT for various mobile platforms, unavailability of a joint API, competitiveness and double roles among stakeholders, and ICT costs. We suggest how to address the barriers and argue that digitalized co-production of the type presented will likely increase. Here our study can contribute to the successive accumulation of knowledge.
Address (up) Department of Science and Technology, Linköping university, Department of Information Systems, University of Agder
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2455
Share this record to Facebook
 

 
Author Dahlke, D.; Kaiser, S.; Bayer, S.
Title Self-Localization: A proposal to equip first responders with a robust and accurate GNSS device Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 242-251
Keywords Self-Localization; GNSS; First Responder Localization; Multi Frequency GNSS; Multi Constellation GNSS
Abstract In this paper we explore the GNSS positioning capabilities in the context of search and rescue operations. Our contribution is a tool that robustly receives and precisely evaluates GNSS signals. The final positioning information is then transmitted to an orchestrator where other tools like augmented reality utilities or the command and control have access to. During the time from the project start in September 2021 to December 2022 the components have been chosen, and the design and software of the tool have been developed. Furthermore, some of the tool’s capabilities have been tested and compared during field trials with first responders and measurement campaigns. The developed tool outperforms the commonly used smartphone localization in terms of accuracy, operation time and time to get a GNSS fix. This reliability improvement helps to identify someones position in adverse conditions.
Address (up) DLR German Aerospace Center; DLR German Aerospace Center; I.S.A.R. Germany
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/QQLO9872 Approved no
Call Number ISCRAM @ idladmin @ Serial 2522
Share this record to Facebook
 

 
Author Enrique Caballero; Angel Madridano; Dimitrios Sainidis; Konstantinos Konstantoudakis; Petros Daras; Pablo Flores
Title An automated UAV-assisted 2D mapping system for First Responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 890-902
Keywords UAV, drone, 2D Mapping, Swarm, First Responders, Emergency Operations
Abstract Recent advances in the Unmanned Aerial Vehicles (UAVs) sector have allowed such systems to carry a range of sensors, thus increasing their versatility and adaptability to a wider range of tasks and services. Furthermore, the agility of these vehicles allows them to adapt to rapidly changing environments making them an effective tool for emergency situations. A single UAV, or a swarm working in collaboration, can be a handy and helpful tool for First Responders (FRs) during mission planning, mission monitoring, and the tracking of evolving risks. UAVs, with their on-board sensors, can, among other things, capture visual information of the disaster scene in a safe and quick manner, and generate an up-to-date map of the area. This work presents a system for UAV-assisted mapping optimized for FRs, including the generation of routes for the UAVs to follow, data collection and processing, and map generation.
Address (up) Drone Hopper; Drone Hopper; Centre for Research & Technology, CERTH; Centre for Research & Technology, CERTH; Centre for Research & Technology, CERTH; Drone Hopper
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes e.caballero@drone-hopper.com Approved no
Call Number ISCRAM @ idladmin @ Serial 2381
Share this record to Facebook
 

 
Author Tiina Ristmae; Dimitra Dionysiou; Miltiadis Koutsokeras; Athanasios Douklias; Eleftherios Ouzounoglou; Angelos Amditis; Anaxagoras Fotopoulos; George Diles; Pantelis Linardatos; Konstantinos Smanis; Pantelis Lappas; Marios Moutzouris; Manolis Tsogas; Dani
Title The CURSOR Search and Rescue (SaR) Kit: an innovative solution for improving the efficiency of Urban SaR Operations Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 867-880
Keywords Urban Search and Rescue, Victim detection, Rescue robotics, Sensors, Situational awareness
Abstract CURSOR (Coordinated Use of miniaturized Robotic equipment and advanced Sensors for search and rescue OpeRations) is an ongoing European H2020 project with the main objective to enhance the efficiency and safety of Urban Search and Rescue (USaR) operations on disaster sites. CURSOR's approach relies on the integration of multiple mature and emerging technologies offering complementary capabilities to an USaR system, so as to address several challenges and capability gaps currently encountered during first responder missions. The project's research and development are structured around an earthquake master scenario. CURSOR aspires to advance the state-of the-art in several key aspects, including reduced time for victim detection, increased victim localization accuracy, enhanced real-time worksite information management, improved situational awareness and rescue team safety.
Address (up) Federal Agency for Technical Relief (THW) – Headquarters Staff Unit Research & Innovation Management; Institute of Communication and Computer Systems – National Technical University of Athens; Institute of Communication and Computer Systems – National Tec
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes Tiina.Ristmaee@thw.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2379
Share this record to Facebook
 

 
Author Holzhüter, M.; Huhle, G.; Reuter-Oppermann, M.; Hellriegel, J.; Klafft, M.
Title Acceptance study on application systems to improve situational incident management through bi-directional communication between citizens and decision-makers in emergencies and crises situations Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 197-207
Keywords Emergency Control Centre; Situational Awareness; Acceptance of ICT; Population; Crowdsourcing; Video Support; Bidirectional Communication
Abstract Efficient hazard prevention and disaster control depend on situational awareness. Situational information is – among others – provided by citizens on the ground. Disaster managers are often reluctant to use such information on a large scale or in a systematic way for fear of being overwhelmed by information overload in a stressful crisis. New information technologies for crisis management are strongly dependent on the acceptance of the people using them and can only be successful as socio-technical systems. Therefore, 354 employees of public and private emergency operation centres as well as members of crisis management teams were asked to assess different information sharing technologies. 504 people from the public responded to an online survey about their willingness to use such technologies. The results indicate a high level of acceptance by both user groups for bi directional communication technologies for situation management and the improvement of situational awareness.
Address (up) Fraunhofer FOKUS; COREVAS GmbH & CO.KG; Technische Universität Darmstadt; Fraunhofer FOKUS; Fraunhofer FOKUS
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/ZLXU9879 Approved no
Call Number ISCRAM @ idladmin @ Serial 2518
Share this record to Facebook
 

 
Author Benjamin Barth; Govinda Chaithanya Kabbinahithilu; Alexandros Bartzas; Spyros Pantazis; Tomaso deCola
Title A Content Oriented Information Sharing System for Disaster Management Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 922-927
Keywords Information Sharing, Preparation, Response, Content Oriented.
Abstract In response to natural and man-made hazards multiple organisations usually are involved in a very complex situation. On the other hand, extreme weather situations due to the climate change create hazards in areas which were considered safe before. In order to improve the capabilities of involved organisations in responding and preparing for disaster events, the availability of an efficient information sharing approach is a key enabler. To this end, we propose a communication system based on a content oriented architecture tailored to disaster management. It includes a catalogue that is offering web services for publishing and subscribing of disaster information and for further collaboration amongst agencies and first responders. Moreover, the considered approach also allows for full content access control and enables a flexible system. The paper shows the current status of the system design. Next steps will include the implementation and evaluation of the approach.
Address (up) German Aerospace Center (DLR); German Aerospace Center (DLR); Space Hellas S.A.; Space Hellas S.A.; German Aerospace Center (DLR)
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-82 ISBN 2411-3468 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes Benjamin.Barth@dlr.de Approved no
Call Number ISCRAM @ idladmin @ Serial 2283
Share this record to Facebook
 

 
Author Lorscheidt, J.; Wehbe, B.; Cesar, D.; Becker, T.; Vögele, T.
Title Increasing diver safety for heavy underwater works by Sonar-to-Video Image Translation Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 166-176
Keywords Diver Monitoring; GANs; Sonar Sensor Fusion; Marine Perception
Abstract Supervision of technical dives is particularly important in emergency and disaster response operations to ensure the safety of divers in unexplored locations with uncertain conditions. Diver monitoring relies primarily on voice communication and a video stream that gives the operator a first-person view of the diver. However, in many cases underwater visibility can drop to just a few centimeters, leaving the diver only able to feel his way with his hands and the operator depended only on voice communication, making it very difficult for both of them to identify upcoming hazards. In the DeeperSense research project, we are attempting to reduce the limitations caused by poor underwater visibility by using a sonar in combination with an AI-based algorithm designed to translate the sonar signal into a visual image that is independent of the turbidity of the water and gives an overview of the situation where the eye can no longer see anything. Laboratory results show that visual information can be recovered from sonar data.
Address (up) German Federal Agency for Technical Relief; DFKI – Robotics Innovation Center; Kraken Robotik GmbH;
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/KNWQ3005 Approved no
Call Number ISCRAM @ idladmin @ Serial 2515
Share this record to Facebook
 

 
Author Spyros Chrysanthopoulos; Theofanis Kapetanakis; Giannis Chaidemenos; Stelios Vernardos; Harris Georgiou; Claudio Rossi
Title Emergency Response in Recent Urban/Suburban Disaster Events in Attica: Technology Gaps, Limitations and Lessons Learned Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 984-989
Keywords First Responders, Search and Rescue, Flash Flood, Urban Wildfire, Urban Operations.
Abstract Emergency response operations in large-scale urban/suburban disaster events is often addressed by the standard protocols and international guidelines for collapsed buildings, heavy debris, etc. However, a wide range of First Responder (FR) operations need to address various other contexts, work environments and hazards. In this paper, two real disaster events are explored as use cases for such urban/suburban FR operations, namely a flash flood and a wildfire, both in Attica, Greece (2017-2018). Based on our team's experience from these mobilizations and active participation in both these events as FR actor in the field, we present the challenges, the complexity of such multi-aspect disaster events, the limitations of emergency response, the technology gaps of the FR teams, as well as the lessons learned during these deployments. Finally, we make some notes on future prospects and possible advancements in tools and technologies that would greatly enhance the operational safety and readiness of the FR teams in such events.
Address (up) Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); Hellenic Rescue Team of Attica (HRTA); LINKS Foundation
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-88 ISBN 2411-3474 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes harris@xgeorgio.info Approved no
Call Number Serial 2289
Share this record to Facebook
 

 
Author Michael Holzhüter; Ulrich Meissen
Title A Decentralized Reference Architecture for Interconnected Systems in Emergency Management Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 961-972
Keywords Civil Protection; Emergency Management; Interoperability; Interconnected Collaboration; Resilient Architecture
Abstract Optimal communication and information exchange are key elements for handling complex crises or disaster situations. With the increasing number of heterogeneous ICT systems, also raises the importance of adequate support for interconnectivity and information logistics between stakeholders to thoroughly gather information and to make quick but precise decisions. The main purpose of the information exchange is then to manage the crisis as quickly as possible, to provide full information to protect first responders' health and safety, to optimally dispatch resources, and to ensure coordination between different relief forces. Based on an end user survey with a particular focus on first responders, this paper introduces an evolutionary architecture to enable information exchange in crises situation or disasters. The aim is to provide a decentralized approach among heterogeneous ICT-systems which abstracts from the underlying communication technologies and heterogeneity of connected systems and fulfills the functional and non-functional requirements from end users.
Address (up) Hochschule für Technik und Wirtschaft Berlin; Fraunhofer-Institut für Offene Kommunikationssysteme; Hochschule für Technik und Wirtschaft Berlin; Fraunhofer-Institut für Offene Kommunikationssysteme
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-86 ISBN 2411-3472 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes michael.holzhueter@fokus.fraunhofer.de Approved no
Call Number Serial 2287
Share this record to Facebook
 

 
Author Thomas Theodoridis; George Katsikas; Nicholas Vretos; Petros Daras
Title A Symbiotic Orchestration Module for Multi-agent Collaboration in Disaster Response Scenarios Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 771-780
Keywords Symbiotic controller; multi-robot collaboration; first responders; disaster response
Abstract This paper presents the Symbiotic Orchestration Module, which facilitates the collaboration of smart agents in disaster response scenarios. By effectively orchestrating the actions of different agents in critical situations towards a common goal, it enhances the individual capabilities of the agents and unlocks new possibilities that are not available when agents act isolated. To achieve this, the Symbiotic Orchestration Module is composed of four sub-modules: a) the Mission Controller, which is responsible for keeping track of ongoing missions, agent allocations and for handling non-collaborative missions, b) the Symbiotic Operation Control Module, which handles collaborative missions proposed by the system, c) the Task Allocation Module, which automatically assigns available robots to incoming missions based on robot capabilities and mission requirements, and d) the Task Recognition and Optimal Sequencing Module, which is responsible for recognizing opportunities for agent collaboration and for system-wide goal optimization.
Address (up) Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece; Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece; Information Technologies
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2454
Share this record to Facebook
 

 
Author Gkika, I.; Pattas, D.; Konstantoudakis, K.; Zarpalas, D.
Title Object detection and augmented reality annotations for increased situational awareness in light smoke conditions Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 231-241
Keywords Image Processing; Smoke; Augmented Reality; Deep Learning; Situational Awareness
Abstract Innovative technologies powered by Computer Vision algorithms can aid first responders, increasing their situ ational awareness. However, adverse conditions, such as smoke, can reduce the efficacy of such algorithms by degrading the input images. This paper presents a pipeline of image de-smoking, object detection, and augmented reality display that aims to enhance situational awareness in smoky conditions. A novel smoke-reducing deep learning algorithm is applied as a preprocessing step, before state-of-the-art object detection. The detected objects and persons are highlighted in the user’s augmented reality display. The proposed method is shown to increase detection accuracy and confidence. Testing in realistic environments provides an initial evaluation of the method, both in terms of image processing and of usefulness to first responders.
Address (up) Information Technologies Institute; Information Technologies Institute; Information Technologies Institute; Information Technologies Institute
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/YOMA9043 Approved no
Call Number ISCRAM @ idladmin @ Serial 2521
Share this record to Facebook
 

 
Author Balogh, Z.; Gatial, E.; Dolatabadi, S.H.; Dlugolinský, Štefan; Saltarella, M.; Scipioni, M.P.; Grunwald, D.; Przybyszewski, M.P.; Majlingova, A.; Brodrechtova, Y.; Mojir, K.Y.; Olson, N.; Levak, J.; Chandramouli, K.
Title Communication Protocol for using Nontraditional Information Sources between First Responders and Citizens during Wildfires Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 152-165
Keywords Communication Protocol; Wildfires; Forest Fires; Drones; Mesh in the Sky; Emergency Response; First Responders
Abstract One of the biggest challenges faced during the wildfires is communication. A specific case represents the need to establish communication between first responders and the public. This paper presents a proposal for a generic protocol to ensure effective communication between fire fighters and many citizens at the incident site or in the surrounding area using nontraditional information sources such as a dedicated mobile app or social media. Specific challenges, concepts and technologies relevant to such communication are described specifically customized for forest fires and wildfires. The protocol itself is provided by proposing information flows between the involved actors. Moreover, several technologies including a Citizen Engagement Mobile App, an Edge Micro Data Center for forward command centers, a Mesh in the Sky communication infrastructure or a Dashboard integrating and displaying all the data in one place is shortly introduced. The presented paper is a work in progress.
Address (up) Institute of Informatics, Slovak Academy of Sciences in Bratislava; Fincons SpA; ITTI Sp. z o.o.; Technical University in Zvolen; Swedish School of Library and Information Science, University of Borås; RiniGARD; Queen Mary University of London, United Kingdom
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN 2411-3387 ISBN 979-8-218-21749-5 Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/YIJK9098 Approved no
Call Number ISCRAM @ idladmin @ Serial 2514
Share this record to Facebook
 

 
Author Zelenka, J.; Kasanický, T.š; Gatial, E.; Balogh, Z.; Majlingová, A.; Brodrechtova, Y.; Kalinovská, S.; Rehák, R.; Semet, Y.; Boussu, G.
Title Coordination of Drones Swarm for Wildfires Monitoring Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 144-151
Keywords Forest Fire; Wildfires; Drone; Fire Protection; Fire Monitoring
Abstract As a result of climate change and global weather patterns, large forest fires are becoming more frequent in different parts of the world. The focus of the presented work is on creation of a complex coordination and communication framework for a swarm of drones specially tailored for use in preventing and monitoring of forest fires. The presented algorithm has been testing and evaluating using a computer simulation. The testing and validation in relevant environment is scheduled during a pilot demonstration exercise with real personnel and equipment, which will take place in Slovakia on April 2023. The presented work is a part of the SILVANUS EU H2020 project, whose objective is the creation of a climate resilient forest management platform for forest fire prevention and suppression. SILVANUS draws on environmental, technical, and social science experts to support regional and national authorities responsible for forest fire management in their respective countries.
Address (up) Institute of Informatics, Slovak Academy of Sciences; Technical University in Zvolen, College of Forestry, Department of Forest Economics and Management; 3MON, Ivanská cesta 2, 82104; Thales Research and Technology
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN 2411-3387 ISBN 979-8-218-21749-5 Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/MUJT3755 Approved no
Call Number ISCRAM @ idladmin @ Serial 2513
Share this record to Facebook
 

 
Author Tobias Andersson Granberg; Carl-Oscar Jonson; Erik Prytz; Krisjanis Steins; Martin Waldemarsson
Title Sensor Requirements for Logistics Analysis of Emergency Incident Sites Type Conference Article
Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020
Volume Issue Pages 952-960
Keywords Sensors; Emergency Response Planning; Tracking; Team Interaction
Abstract Using sensors to collect data at emergency incident sites can facilitate analysis of the logistic operations. This can be used to improve planning and preparedness for new operations. Furthermore, real-time information from the sensors can serve as operational decision support. In this work in progress, we investigate the requirements on the sensors, and on the sensor data, to facilitate such an analysis. Through observations of exercises, the potential of using sensors for data collection is explored, and the requirements are considered. The results show that the potential benefits are significant, especially for tracking patients, and understanding the interaction between the response actors. However, the sensors need to be quite advanced in order to capture the necessary data.
Address (up) Linköping University, Department of Science and Technology; Linköping University, Center for Disaster Medicine and Traumatology, and Department of Biomedical and Clinical Sciences; Linköping University, Department of Computer and Information Science; Linköping University, Department of Science and Technology; Linköping University, Department of Science and Technology
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-27-85 ISBN 2411-3471 Medium
Track Technologies for First Responders Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management
Notes tobias.andersson.granberg@liu.se Approved no
Call Number Serial 2286
Share this record to Facebook
 

 
Author Kerrianne Morrison; Yee-Yin Choong; Shanee Dawkins; Sandra Spickard Prettyman
Title Communication Technology Problems and Needs of Rural First Responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 817-834
Keywords Communication technology, First responders, Public safety, Rural communities, Usability
Abstract Although new technology may benefit rural first responders to help them serve their communities, to date little is known about what communication technology problems rural first responders most need addressed and what future technology they desire. To explore the context of use and communication technology problems and needs of rural first responders, semi-structured interviews were conducted with 63 rural first responders across four disciplines: Communications (Comm) Center & 9-1-1 Services, Emergency Medical Services, Fire Service, and Law Enforcement. Using qualitative data analysis, interview data were sorted into problems and needs categories. Rural first responders' greatest problems were with reliable coverage/connectivity, interoperability, implementation/information technology (IT) infrastructure, and physical ergonomics. Rural first responders' greatest need for new technology was to address their current problems, but they were interested in new technology that leverages real-time technology and location tracking. Implications for researchers and developers of public safety communication technology are discussed.
Address (up) National Institute of Standards and Technology; National Institute of Standards and Technology; National Institute of Standards and Technology; Culture Catalyst, LLC
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes kerrianne.morrison@nist.gov Approved no
Call Number ISCRAM @ idladmin @ Serial 2376
Share this record to Facebook
 

 
Author Cámbara, G.; Grivolla, J.; Farrús, M.; Wanner, L.
Title Automatic Speech Translation for Multinational First Responder Teams Type Conference Article
Year 2023 Publication Proceedings of the 20th International ISCRAM Conference Abbreviated Journal Iscram 2023
Volume Issue Pages 188-196
Keywords Automatic Speech Translation; First Responders; Disaster Management
Abstract Big disasters as increasingly observed all over the world, often require the involvement of a large number of personnel, in particular personnel acting in the field, i.e., First Responders. By far not always local teams are sufficient. As a consequence, in particular in Europe, teams from different member states are dispatched to support the local teams. However, this bears a potential of miscommunication since it cannot be taken for granted that English is mastered to a sufficient degree by everybody to serve as lingua franca. In this paper, we present work in progress carried out in the context of the INGENIOUS project on an automatic speech translation module that facilitates the interaction between First Responders speaking different languages. The module is embedded into the Telegram Messenger Application and consists of three main modules: Automatic Speech Recognition, Machine Translation, and Text-to-Speech, which are applied in sequence. We opt for a pipeline solution instead of end-to-end speech translation in order to guarantee the availability of the original speech transcriptions and their translations.
Address (up) Pompeu Fabra University; University of Barcelona; Catalan Institute for Research and Advanced Studies (ICREA) and NLP Group, Pompeu Fabra University
Corporate Author Thesis
Publisher University of Nebraska at Omaha Place of Publication Omaha, USA Editor Jaziar Radianti; Ioannis Dokas; Nicolas Lalone; Deepak Khazanchi
Language English Summary Language Original Title
Series Editor Hosssein Baharmand Series Title Abbreviated Series Title
Series Volume Series Issue Edition 1
ISSN ISBN Medium
Track Technologies for First Responders Expedition Conference
Notes http://dx.doi.org/10.59297/RPZH2519 Approved no
Call Number ISCRAM @ idladmin @ Serial 2517
Share this record to Facebook
 

 
Author Ana María Cintora; Eva Teresa Robledo; Cristina Gomez; Raquel Lafuente; Ricardo García; Cristina Horrillo
Title Analysis of the Chemical Incidents from Seveso Directive according to Direct Fatalities and Injuries Type Conference Article
Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022
Volume Issue Pages 1058-1067
Keywords Major accident hazards; Seveso; chemical accidents; loss data; emergency preparedness
Abstract This paper provides a descriptive analysis of the eMARS database, which contains compulsory information on major chemical incidents under the SEVESO Directive. This analysis serves to assess the installations with the highest number of direct fatalities and injuries. At present, the data collected to assess the status of chemical accident risk globally are rather limited. There are some sources of data on chemical accidents in government and industry that might be used to estimate the frequency and severity of some types of events, but they are far from providing a complete perspective that covers all chemical accidents, thus limiting the possibilities of obtaining a more homogeneous picture of the risk of chemical accidents worldwide. Waste storage, treatment and disposal is one of the industrial areas with the highest number of fatalities and injuries, so we must emphasize the importance of this type of industry within the risk maps.
Address (up) Prehospital Emergencies Medical Service Madrid Region (SUMMA112) Madrid, Spain; Prehospital Emergencies Medical Service Madrid Region (SUMMA112) Madrid, Spain; Prehospital Emergencies Medical Service Madrid Region (SUMMA112) Madrid, Spain; Prehospital Eme
Corporate Author Thesis
Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium
Track Technologies for First Responders Expedition Conference
Notes Approved no
Call Number ISCRAM @ idladmin @ Serial 2471
Share this record to Facebook
 

 
Author Claudio Paliotta; Klaus Ening; Sigurd Mørkved Albrektsen
Title Micro indoor-drones (MINs) for localization of first responders Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 881-889
Keywords Micro indoor-drones, Indoor localisation, Swarm
Abstract In this paper, we describe our approach to the localization in GNSS-denied and risky unknown environments offirst responders (FRs). The INGENIOUS project is an EU funded project which is developing a new integratedtoolkit to support the operations of FRs. The micro indoor-drones (MINs) developed within the INGENIOUSproject represent a component of the toolkit which will support the localization of FRs in search-and-rescue (SAR)operations. In this paper, the concept behind the MINs and the current achievements are illustrated.
Address (up) SINTEF Digital; SINTEF Digital; SINTEF Digital
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Technologies for First Responders Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes claudio.paliotta@sintef.no Approved no
Call Number ISCRAM @ idladmin @ Serial 2380
Share this record to Facebook