|
Records |
Links |
|
Author |
Cornelia Caragea; Adrian Silvescu; Andrea Tapia |
|
|
Title |
Identifying Informative Messages in Disasters using Convolutional Neural Networks |
Type |
Conference Article |
|
Year |
2016 |
Publication |
ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2016 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Informative Tweets Classification; Disaster Events; Convolutional Neural Networks |
|
|
Abstract |
Social media is a vital source of information during any major event, especially natural disasters. Data produced through social networking sites is seen as ubiquitous, rapid and accessible, and it is believed to empower average citizens to become more situationally aware during disasters and coordinate to help themselves. However, with the exponential increase in the volume of social media data, so comes the increase in data that are irrelevant to a disaster, thus, diminishing peoples? ability to find the information that they need in order to organize relief efforts, find help, and potentially save lives. In this paper, we present an approach to identifying informative messages in social media streams during disaster events. Our approach is based on Convolutional Neural Networks and shows significant improvement in performance over models that use the ?bag of words? and n-grams as features on several datasets of messages from flooding events. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Federal University of Rio de Janeiro |
Place of Publication |
Rio de Janeiro, Brasil |
Editor |
A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3388 |
ISBN |
978-84-608-7984-9 |
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
13th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1397 |
|
Share this record to Facebook |
|
|
|
|
Author |
Cornelia Caragea; Anna Squicciarini; Sam Stehle; Kishore Neppalli; Andrea H. Tapia |
|
|
Title |
Mapping moods: Geo-mapped sentiment analysis during hurricane sandy |
Type |
Conference Article |
|
Year |
2014 |
Publication |
ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2014 |
|
|
Volume |
|
Issue |
|
Pages |
642-651 |
|
|
Keywords |
Data mining; Disasters; Hurricanes; Information systems; Disaster-related geo-tagged tweets; Online reviews; Online social networkings; Sentiment analysis; Sentiment classification; Social networking sites; Social networking (online) |
|
|
Abstract |
Sentiment analysis has been widely researched in the domain of online review sites with the aim of generating summarized opinions of product users about different aspects of the products. However, there has been little work focusing on identifying the polarity of sentiments expressed by users during disaster events. Identifying sentiments expressed by users in an online social networking site can help understand the dynamics of the network, e.g., the main users' concerns, panics, and the emotional impacts of interactions among members. Data produced through social networking sites is seen as ubiquitous, rapid and accessible, and it is believed to empower average citizens to become more situationally aware during disasters and coordinate to help themselves. In this work, we perform sentiment classification of user posts in Twitter during the Hurricane Sandy and visualize these sentiments on a geographical map centered around the hurricane. We show how users' sentiments change according not only to users' locations, but also based on the distance from the disaster. |
|
|
Address |
Computer Science and Engineering, University of North Texas, Denton, TX-76203, United States; Information Sciences and Technology, Pennsylvania State University, University Park, PA-16801, United States |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
The Pennsylvania State University |
Place of Publication |
University Park, PA |
Editor |
S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih. |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
9780692211946 |
Medium |
|
|
|
Track |
Social Media in Crisis Response and Management |
Expedition |
|
Conference |
11th International ISCRAM Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
372 |
|
Share this record to Facebook |
|
|
|
|
Author |
Cornelia Caragea; Nathan McNeese; Anuj Jaiswal; Greg Traylor; Hyun-Woo Kim; Prasenjit Mitra; Dinghao Wu; Andrea H. Tapia; Lee Giles; Bernard J. Jansen; John Yen |
|
|
Title |
Classifying text messages for the haiti earthquake |
Type |
Conference Article |
|
Year |
2011 |
Publication |
8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011 |
Abbreviated Journal |
ISCRAM 2011 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Abstracting; Artificial intelligence; Disaster prevention; Information systems; Learning systems; Text processing; Disaster relief; Emergency response; Emergency situation; Haiti earthquakes; Information technology infrastructure; Nongovernmental organizations; Relief workers; Self-organizing behavior; Earthquakes |
|
|
Abstract |
In case of emergencies (e.g., earthquakes, flooding), rapid responses are needed in order to address victims' requests for help. Social media used around crises involves self-organizing behavior that can produce accurate results, often in advance of official communications. This allows affected population to send tweets or text messages, and hence, make them heard. The ability to classify tweets and text messages automatically, together with the ability to deliver the relevant information to the appropriate personnel are essential for enabling the personnel to timely and efficiently work to address the most urgent needs, and to understand the emergency situation better. In this study, we developed a reusable information technology infrastructure, called Enhanced Messaging for the Emergency Response Sector (EMERSE), which classifies and aggregates tweets and text messages about the Haiti disaster relief so that non-governmental organizations, relief workers, people in Haiti, and their friends and families can easily access them. |
|
|
Address |
College of Information Sciences and Technology, Pennsylvania State University, University Park, PA-16801, United States |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Information Systems for Crisis Response and Management, ISCRAM |
Place of Publication |
Lisbon |
Editor |
M.A. Santos, L. Sousa, E. Portela |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
9789724922478 |
Medium |
|
|
|
Track |
Analytical Information Systems |
Expedition |
|
Conference |
8th International ISCRAM Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
371 |
|
Share this record to Facebook |
|
|
|
|
Author |
Hongmin Li; Doina Caragea; Cornelia Caragea |
|
|
Title |
Combining Self-training with Deep Learning for Disaster Tweet Classification |
Type |
Conference Article |
|
Year |
2021 |
Publication |
ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
Iscram 2021 |
|
|
Volume |
|
Issue |
|
Pages |
719-730 |
|
|
Keywords |
Domain Adaptation, Self-training, Crisis Tweets Classification, BERT, CNN |
|
|
Abstract |
Significant progress has been made towards automated classification of disaster or crisis related tweets using machine learning approaches. Deep learning models, such as Convolutional Neural Networks (CNN), domain adaptation approaches based on self-training, and approaches based on pre-trained language models, such as BERT, have been proposed and used independently for disaster tweet classification. In this paper, we propose to combine self-training with CNN and BERT models, respectively, to improve the performance on the task of identifying crisis related tweets in a target disaster where labeled data is assumed to be unavailable, while unlabeled data is available. We evaluate the resulting self-training models on three crisis tweet collections and find that: 1) the pre-trained language model BERTweet is better than the standard BERT model, when fine-tuned for downstream crisis tweets classification; 2) self-training can help improve the performance of the CNN and BERTweet models for larger unlabeled target datasets, but not for smaller datasets. |
|
|
Address |
Department of Computer Science, Kansas State University; Department of Computer Science, Kansas State University; Department of Computer Science, University of Illinois at Chicago |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Virginia Tech |
Place of Publication |
Blacksburg, VA (USA) |
Editor |
Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
978-1-949373-61-5 |
ISBN |
|
Medium |
|
|
|
Track |
Social Media for Disaster Response and Resilience |
Expedition |
|
Conference |
18th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
hongminli@ksu.edu |
Approved |
no |
|
|
Call Number |
ISCRAM @ idladmin @ |
Serial |
2367 |
|
Share this record to Facebook |
|
|
|
|
Author |
Hongmin Li; Doina Caragea; Cornelia Caragea |
|
|
Title |
Towards Practical Usage of a Domain Adaptation Algorithm in the Early Hours of a Disaster |
Type |
Conference Article |
|
Year |
2017 |
Publication |
Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management |
Abbreviated Journal |
Iscram 2017 |
|
|
Volume |
|
Issue |
|
Pages |
692-704 |
|
|
Keywords |
Twitter; Domain adaptation; Disaster; Classification |
|
|
Abstract |
Many machine learning techniques have been proposed to reduce the information overload in social media data during an emergency situation. Among such techniques, domain adaptation approaches present greater potential as compared to supervised algorithms because they don't require labeled data from the current disaster for training. However, the use of domain adaptation approaches in practice is sporadic at best. One reason is that domain adaptation algorithms have parameters that need to be tuned using labeled data from the target disaster, which is presumably not available. To address this limitation, we perform a study on one domain adaptation approach with the goal of understanding how much source data is needed to obtain good performance in a practical situation, and what parameter values of the approach give overall good performance. The results of our study provide useful insights into the practical application of domain adaptation algorithms in real crisis situations. |
|
|
Address |
Kansas State University; University of North Texas |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iscram |
Place of Publication |
Albi, France |
Editor |
Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
|
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
14th International Conference on Information Systems for Crisis Response And Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
ISCRAM @ idladmin @ |
Serial |
2057 |
|
Share this record to Facebook |
|
|
|
|
Author |
Hongmin Li; Nicolais Guevara; Nic Herndon; Doina Caragea; Kishore Neppalli; Cornelia Caragea; Anna Squicciarini; Andrea H. Tapia |
|
|
Title |
Twitter Mining for Disaster Response: A Domain Adaptation Approach |
Type |
Conference Article |
|
Year |
2015 |
Publication |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2015 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Disaster Response; domain adaptation; tweet classification |
|
|
Abstract |
Microblogging data such as Twitter data contains valuable information that has the potential to help improve the speed, quality, and efficiency of disaster response. Machine learning can help with this by prioritizing the tweets with respect to various classification criteria. However, supervised learning algorithms require labeled data to learn accurate classifiers. Unfortunately, for a new disaster, labeled tweets are not easily available, while they are usually available for previous disasters. Furthermore, unlabeled tweets from the current disaster are accumulating fast. We study the usefulness of labeled data from a prior source disaster, together with unlabeled data from the current target disaster to learn domain adaptation classifiers for the target. Experimental results suggest that, for some tasks, source data itself can be useful for classifying target data. However, for tasks specific to a particular disaster, domain adaptation approaches that use target unlabeled data in addition to source labeled data are superior. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
University of Agder (UiA) |
Place of Publication |
Kristiansand, Norway |
Editor |
L. Palen; M. Buscher; T. Comes; A. Hughes |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
9788271177881 |
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
yes |
|
|
Call Number |
|
Serial |
1234 |
|
Share this record to Facebook |
|
|
|
|
Author |
Hongmin Li; Xukun Li; Doina Caragea; Cornelia Caragea |
|
|
Title |
Comparison of Word Embeddings and Sentence Encodings for Generalized Representations in Crisis Tweet Classifications |
Type |
Conference Article |
|
Year |
2018 |
Publication |
Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. |
Abbreviated Journal |
Iscram Ap 2018 |
|
|
Volume |
|
Issue |
|
Pages |
480-493 |
|
|
Keywords |
Word Embeddings, Sentence Encodings, Reduced Tweet Representation, Crisis Tweet Classification |
|
|
Abstract |
Many machine learning and natural language processing techniques, including supervised and domain adaptation algorithms, have been proposed and studied in the context of filtering crisis tweets. However, applying these approaches in real-time is still challenging because of time-critical requirements of emergency response operations and also diversities and unique characteristics of emergency events. In this paper, we explore the idea of building “generalized” classifiers for filtering crisis tweets that can be pre-trained, and are thus ready to use in real-time, while generalizing well on future disasters/crises data. We propose to achieve this using simple feature based adaptation with tweet representations based on word embeddings and also sentence-level embeddings, representations which do not rely on unlabeled data to achieve domain adaptations and can be easily implemented. Given that there are different types of word/sentence embeddings that are widely used, we propose to compare them to get a general idea about which type works better with crisis tweets classification tasks. Our experimental results show that GloVe embeddings in general work better with the datasets used in our evaluation, and that the supervised algorithms used in our experiments benefit from GloVe embeddings trained specifically on crisis data. Furthermore, our experimental results show that following GloVe, the sentence embeddings have great potential in crisis tweet tasks. |
|
|
Address |
Kansas State University; Kansas State University; Kansas State University; Kansas State University |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Massey Univeristy |
Place of Publication |
Albany, Auckland, New Zealand |
Editor |
Kristin Stock; Deborah Bunker |
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Track |
Social Media and Community Engagement Supporting Resilience Building |
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1689 |
|
Share this record to Facebook |
|
|
|
|
Author |
Jess Kropczynski; Rob Grace; Shane Halse; Doina Caragea; Cornelia Caragea; Andrea Tapia |
|
|
Title |
Refining a Coding Scheme to Identify Actionable Information on Social Media |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management |
Abbreviated Journal |
Iscram 2019 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Dispatch, Public Safety Answering Point (PSAP), Social Media, Qualitative Coding. |
|
|
Abstract |
This paper describes the use of a previously established qualitative coding scheme developed through a design workshop with public safety professionals, and applied the schema to social media data collecting during crises. The intention of applying this scheme to existing crisis datasets was to acquire training data for machine learning. Applying the coding scheme to social media data revealed that additional subcategories of the coding scheme are necessary to satisfy information requirements necessary to dispatch first responders to an incident. The coding scheme was refined and adapted into a set of instructions for qualitative coders on Amazon Mechanical Turk. The contribution of this work is a coding scheme that is more directly related to the information needs of public safety professionals. Implications of early results using the refined coding scheme are discussed in terms of proposed automated methods to identify actionable information for dispatch of first responders during emergency incidents. |
|
|
Address |
Uiniversity of Cincinnati, United States of America;The Pennsylvania State University;Kansas State University;University of Illinois at Chicago |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iscram |
Place of Publication |
Valencia, Spain |
Editor |
Franco, Z.; González, J.J.; Canós, J.H. |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
978-84-09-10498-7 |
Medium |
|
|
|
Track |
T8- Social Media in Crises and Conflicts |
Expedition |
|
Conference |
16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019) |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1981 |
|
Share this record to Facebook |
|
|
|
|
Author |
Reza Mazloom; HongMin Li; Doina Caragea; Muhammad Imran; Cornelia Caragea |
|
|
Title |
Classification of Twitter Disaster Data Using a Hybrid Feature-Instance Adaptation Approach |
Type |
Conference Article |
|
Year |
2018 |
Publication |
ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
Iscram 2018 |
|
|
Volume |
|
Issue |
|
Pages |
727-735 |
|
|
Keywords |
Tweet classification, Domain adaptation, Matrix factorization, k-Nearest Neighbors, Disaster response |
|
|
Abstract |
Huge amounts of data that are generated on social media during emergency situations are regarded as troves of critical information. The use of supervised machine learning techniques in the early stages of a disaster is challenged by the lack of labeled data for that particular disaster. Furthermore, supervised models trained on labeled data from a prior disaster may not produce accurate results, given the inherent variation between the current and the prior disasters. To address the challenges posed by the lack of labeled data for a target disaster, we propose to use a hybrid feature-instance adaptation approach based on matrix factorization and the k nearest neighbors algorithm, respectively. The proposed hybrid adaptation approach is used to select a subset of the source disaster data that is representative for the target disaster. The selected subset is subsequently used to learn accurate Naive Bayes classifiers for the target disaster. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Rochester Institute of Technology |
Place of Publication |
Rochester, NY (USA) |
Editor |
Kees Boersma; Brian Tomaszeski |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
978-0-692-12760-5 |
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
2146 |
|
Share this record to Facebook |
|
|
|
|
Author |
Shane Errol Halse; Andrea Tapia; Anna Squicciarini; Cornelia Caragea |
|
|
Title |
Tweet Factors Influencing Trust and Usefulness During Both Man-Made and Natural Disasters |
Type |
Conference Article |
|
Year |
2016 |
Publication |
ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2016 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Twitter; Sandy; Hurricane; Boston Bombing; Trust; Usefulness |
|
|
Abstract |
To this date, research on crisis informatics has focused on the detection of trust in Twitter data through the use of message structure, sentiment, propagation and author. Little research has examined the usefulness of these messages in the crisis response domain. Toward detecting useful messages in case of crisis, in this paper, we characterize tweets, which are perceived useful or trustworthy, and determine their main features. Our analysis is carried out on two datasets (one natural and one man made) gathered from Twitter concerning hurricane Sandy in 2012 and the Boston Bombing 2013. The results indicate that there is a high correlation and similar factors (support for the victims, informational data, use of humor and type of emotion used) influencing trustworthiness and usefulness for both disaster types. This could have impacts on how messages from social media data are analyzed for use in crisis response. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Federal University of Rio de Janeiro |
Place of Publication |
Rio de Janeiro, Brasil |
Editor |
A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3388 |
ISBN |
978-84-608-7984-9 |
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
13th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1403 |
|
Share this record to Facebook |
|
|
|
|
Author |
Shane Errol Halse; Andrea Tapia; Anna Squicciarini; Cornelia Caragea |
|
|
Title |
An Emotional Step Towards Automated Trust Detection in Crisis Social Media |
Type |
Conference Article |
|
Year |
2016 |
Publication |
ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2016 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Twitter; Sandy; Hurricane; Boston; Bombing; Trust; Usefulness; Sentiment. Emotion |
|
|
Abstract |
To this date, research on crisis informatics has focused on the detection of trust in Twitter data through the use of message structure, sentiment, propagation and author. Little research has examined the effects of perceived emotion of these messages in the crisis response domain. Toward detecting useful messages in case of crisis, we examine perceived emotions of these messages and how the different emotions affect the perceived usefulness and trustworthiness. Our analysis is carried out on two datasets gathered from Twitter concerning hurricane Sandy in 2012 and the Boston Bombing 2013. The results indicate that there is a significant difference in the perceived emotions that contribute towards the perceived trustworthiness and usefulness. This could have impacts on how messages from social media data are analyzed for use in crisis response. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Federal University of Rio de Janeiro |
Place of Publication |
Rio de Janeiro, Brasil |
Editor |
A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3388 |
ISBN |
978-84-608-7984-9 |
Medium |
|
|
|
Track |
Emerging Topics |
Expedition |
|
Conference |
13th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1414 |
|
Share this record to Facebook |
|
|
|
|
Author |
Tiberiu Sosea; Iustin Sirbu; Cornelia Caragea; Doina Caragea; Traian Rebedea |
|
|
Title |
Using the Image-Text Relationship to Improve Multimodal Disaster Tweet Classification |
Type |
Conference Article |
|
Year |
2021 |
Publication |
ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
Iscram 2021 |
|
|
Volume |
|
Issue |
|
Pages |
691-704 |
|
|
Keywords |
Multi-modal disaster tweet classification, Image-text coherence relationship prediction, ViLBERT |
|
|
Abstract |
In this paper, we show that the text-image relationship of disaster tweets can be used to improve the classification of tweets from emergency situations. To this end, we introduce DisRel, a dataset which contains 4,600 multimodal tweets, collected during the disasters that hit the USA in 2017, and manually annotated with coherence image-text relationships, such as Similar and Complementary. We explore multiple models to detect these relationships and perform a comprehensive analysis into the robustness of these methods. Based on these models, we build a simple feature augmentation approach that can leverage the text-image relationship. We test our methods on 2 tasks in CrisisMMD: Humanitarian Categories and Damage Assessment, and observe an increase in the performance of the relationship-aware methods. |
|
|
Address |
University of Illinois at Chicago; University Politehnica of Bucharest; University of Illinois at Chicago; Kansas State University; University Politehnica of Bucharest |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Virginia Tech |
Place of Publication |
Blacksburg, VA (USA) |
Editor |
Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
978-1-949373-61-5 |
ISBN |
|
Medium |
|
|
|
Track |
Social Media for Disaster Response and Resilience |
Expedition |
|
Conference |
18th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
tsosea2@uic.edu |
Approved |
no |
|
|
Call Number |
ISCRAM @ idladmin @ |
Serial |
2365 |
|
Share this record to Facebook |
|
|
|
|
Author |
Venkata Kishore Neppalli; Cornelia Caragea; Doina Caragea |
|
|
Title |
Deep Neural Networks versus Naive Bayes Classifiers for Identifying Informative Tweets during Disasters |
Type |
Conference Article |
|
Year |
2018 |
Publication |
ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
Iscram 2018 |
|
|
Volume |
|
Issue |
|
Pages |
677-686 |
|
|
Keywords |
deep neural networks, naive bayes classifiers, handcrafted features |
|
|
Abstract |
In this paper, we focus on understanding the effectiveness of deep neural networks by comparison with the effectiveness of standard classifiers that use carefully engineered features. Specifically, we design various feature sets (based on tweet content, user details and polarity clues) and use these feature sets individually or in various combinations, with Naïve Bayes classifiers. Furthermore, we develop neural models based on Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) with handcrafted architectures. We compare the two types of approaches in the context of identifying informative tweets posted during disasters, and show that the deep neural networks, in particular the CNN networks, are more effective for the task considered. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Rochester Institute of Technology |
Place of Publication |
Rochester, NY (USA) |
Editor |
Kees Boersma; Brian Tomaszeski |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
978-0-692-12760-5 |
Medium |
|
|
|
Track |
Social Media Studies CO - |
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
2141 |
|
Share this record to Facebook |
|
|
|
|
Author |
Venkata Kishore Neppalli; Murilo Cerqueira Medeiros; Cornelia Caragea; Doina Caragea; Andrea Tapia; Shane Halse |
|
|
Title |
Retweetability Analysis and Prediction during Hurricane Sandy |
Type |
Conference Article |
|
Year |
2016 |
Publication |
ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2016 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Twitter; Retweetability Analysis; Retweetability Prediction; Hurricane Sandy; Disaster Events |
|
|
Abstract |
Twitter is a very important source for obtaining information, especially during events such as natural disasters. Users can spread information in Twitter either by crafting new posts, which are called ?tweets,? or by using retweet mechanism to re-post the previously created tweets. During natural disasters, identifying how likely a tweet is to be highly retweeted is very important since it can help promote the spread of good information in a network such as Twitter, as well as it can help stop the spread of misinformation, when corroborated with approaches that identify trustworthy information or misinformation, respectively. In this paper, we present an analysis on retweeted tweets to determine several aspects affecting retweetability. We then extract features from tweets? content and user account information and perform experiments to develop models that automatically predict the retweetability of a tweet in the context of the Hurricane Sandy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Federal University of Rio de Janeiro |
Place of Publication |
Rio de Janeiro, Brasil |
Editor |
A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3388 |
ISBN |
978-84-608-7984-9 |
Medium |
|
|
|
Track |
Social Media Studies |
Expedition |
|
Conference |
13th International Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1389 |
|
Share this record to Facebook |
|
|
|
|
Author |
Xukun Li; Doina Caragea; Cornelia Caragea; Muhammad Imran; Ferda Ofli |
|
|
Title |
Identifying Disaster Damage Images Using a Domain Adaptation Approach |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management |
Abbreviated Journal |
Iscram 2019 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
image classification, disaster damage, domain adaptation, domain adversarial neural networks. |
|
|
Abstract |
Approaches for effectively filtering useful situational awareness information posted by eyewitnesses of disasters,
in real time, are greatly needed. While many studies have focused on filtering textual information, the research
on filtering disaster images is more limited. In particular, there are no studies on the applicability of domain
adaptation to filter images from an emergent target disaster, when no labeled data is available for the target disaster.
To fill in this gap, we propose to apply a domain adaptation approach, called domain adversarial neural networks
(DANN), to the task of identifying images that show damage. The DANN approach has VGG-19 as its backbone,
and uses the adversarial training to find a transformation that makes the source and target data indistinguishable.
Experimental results on several pairs of disasters suggest that the DANN model generally gives similar or better
results as compared to the VGG-19 model fine-tuned on the source labeled data. |
|
|
Address |
Department of Computer Science, Kansas State University, United States of America;Department of Computer Science, University of Illinois at Chicago, United States of America;Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iscram |
Place of Publication |
Valencia, Spain |
Editor |
Franco, Z.; González, J.J.; Canós, J.H. |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
978-84-09-10498-7 |
Medium |
|
|
|
Track |
T8- Social Media in Crises and Conflicts |
Expedition |
|
Conference |
16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019) |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1853 |
|
Share this record to Facebook |
|
|
|
|
Author |
Yingjie Li; Seoyeon Park; Cornelia Caragea; Doina Caragea; Andrea Tapia |
|
|
Title |
Sympathy Detection in Disaster Twitter Data |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management |
Abbreviated Journal |
Iscram 2019 |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Word Embedding, Deep Learning, Machine Learning, Sympathy Tweets Detection |
|
|
Abstract |
Nowadays, micro-blogging sites such as Twitter have become powerful tools for communicating with others in
various situations. Especially in disaster events, these sites can be the best platforms for seeking or providing social
support, of which informational support and emotional support are the most important types. Sympathy, a sub-type
of emotional support, is an expression of one?s compassion or sorrow for a difficult situation that another person
is facing. Providing sympathy to people affected by a disaster can help change people?s emotional states from
negative to positive emotions, and hence, help them feel better. Moreover, detecting sympathy contents in Twitter
can potentially be used for finding candidate donors since the emotion ?sympathy? is closely related to people who
may be willing to donate. Thus, in this paper, as a starting point, we focus on detecting sympathy-related tweets.
We address this task using Convolutional Neural Networks (CNNs) with refined word embeddings. Specifically, we
propose a refined word embedding technique in terms of various pre-trained word vector models and show great
performance of CNNs that use these refined embeddings in the sympathy tweet classification task. We also report
experimental results showing that the CNNs with the refined word embeddings outperform not only traditional
machine learning techniques, such as Naïve Bayes, Support Vector Machines and AdaBoost with conventional
feature sets as bags of words, but also Long Short-Term Memory Networks. |
|
|
Address |
University of Illinois at Chicago, United States of America;Kansas State University, United States of America;Pennsylvania State University, United States of America |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iscram |
Place of Publication |
Valencia, Spain |
Editor |
Franco, Z.; González, J.J.; Canós, J.H. |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
978-84-09-10498-7 |
Medium |
|
|
|
Track |
T8- Social Media in Crises and Conflicts |
Expedition |
|
Conference |
16th International Conference on Information Systems for Crisis Response and Management (ISCRAM 2019) |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1899 |
|
Share this record to Facebook |