|   | 
Details
   web
Records
Author (up) Boni Su; Hong Huang; Zhiqiang Wang; Nan Zhang; Wei Zhu; Xinfeng Wei
Title Urban pluvial flood risk assessment based on scenario simulation Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords
Abstract In this study, urban pluvial flood risk is studied in an actual study area using scenario simulation method based on hydrodynamics. Real weather data and GIS (Geographic Information System) data are adopted to make the results reliable. A region in Haidian District of Beijing is selected as the study area. All the rainfall scenarios (about 200 scenarios) during an 8-year period (from January 1, 2008 to December 31, 2015) are obtained from hourly precipitation data. These rainfall scenarios are used as input for numerical simulations. Spatial-temporal distributions of water depth are obtained through numerical simulation base on SWEs (Shallow-Water Equations). GPU computing technique is applied to increase simulation speed greatly. Influence of rainfall parameters on flood water depth is analyzed. The results show that water depth becomes higher if rainfall duration and average rainfall intensity increase. Moreover, situation of water depth is not only related to overall parameters like rainfall duration or rainfall intensity, but also related to other details of rainfall. Water depth exceedance probability curves of every location and every building are obtained, and different characteristics of the curves are discussed. Finally, the effect of water depth exceedance probability curves of buildings on designing building foundation height is shown. This study is helpful to the risk assessments of urban pluvial flood.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3388 ISBN 978-84-608-7984-9 Medium
Track Poster Session Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1422
Share this record to Facebook
 

 
Author (up) Xiaoyong Ni; Hong Huang; Shiwei Zhou; Boni Su; Jianchun Zheng; Wei Zhu; Huali Liu
Title Simulation of The Urban Waterlogging and Emergency Response Strategy at Subway Station's Entry-exit Platform in Heavy Rainstorm Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 99-120
Keywords Simulation, urban waterlogging, subway stations, emergency response strategy
Abstract Underground space like subway stations is prone to be flooded which can lead to severe and unpredictable damage and even threaten human lives. In this paper, four groups of contrastive simulation of urban waterlogging at two subway stations' entry-exit platforms in heavy rainstorm are conducted, and emergency response strategies are suggested. A waterlogging simulation method named UPFLOOD based on shallow water equations is proposed considering complex topography. It has been found that the waterlogging at subway station's entry-exit platforms is easily influenced by several factors and the site selection of the subway stations is very important. A disaster process construction method based on PN model is proposed and it has been found that the response strategies including plugging, drainage and evacuation are important for disaster mitigation. This study helps decision makers to response quickly to meet the emergency of the waterlogging disaster at subway stations caused by heavy rainstorm.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 2093
Share this record to Facebook
 

 
Author (up) Xiaoyong Ni; Hong Huang; Wenxuan Dong; Chao Chen; Boni Su; Anying Chen
Title Scenario Prediction and Crisis Management for Rain-induced Waterlogging Based on High-precision Simulation Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 159-173
Keywords Rain-induced waterlogging, Scenario prediction, High-precision simulation, Crisis management
Abstract Many cities, especially those in developing countries, are not well prepared for the devastating disaster of exceptional rain-induced waterlogging caused by extreme rainfall. This paper proposes a waterlogging scenario prediction and crisis management method for such kind of extreme rainfall conditions based on high-precision waterlogging simulation. A typical urban region in Beijing, China is selected as the study area in this paper. High-precision and full-scale data in the study area requested for the waterlogging simulation are introduced. The simulation results show that the study area is still vulnerable to extreme rainfall and the subsequent waterlogging. The waterlogging situation is much more severe with the increase of the return period of rainfall. This study offers a good reference for the relevant government departments to make effective policy and take pointed response to the waterlogging problem.
Address Tsinghua University; Tsinghua University; Tsinghua University; Beijing Water Authority; Electric Power Planning & Engineering Institute; Tsinghua University
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes nxy15@mails.tsinghua.edu.cn Approved no
Call Number ISCRAM @ idladmin @ Serial 2322
Share this record to Facebook
 

 
Author (up) Yan Wang; Hong Huang; Lida Huang; Minyan Han; Yiwu Qian; Boni Su
Title An Agile Framework for Detecting and Quantifying Hazardous Gas Releases Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal Iscram 2017
Volume Issue Pages 42-49
Keywords Hazardous gas release; mobile sensing; data fusion; leakage detection; source term estimation
Abstract In response to the threat of hazardous gas releases to public safety and health, we propose an agile framework for detecting and quantifying gas emission sources. Emerging techniques like high-precision gas sensors, source term estimation algorithms and Unmanned Aerial Vehicles are incorporated. The framework takes advantage of both stationary sensor network method and mobile sensing approach for the detection and quantification of hazardous gases from fugitive, accidental or deliberate releases. Preliminary results on street-level detection of urban natural gas leakage is presented. Source term estimation is demonstrated through a synthetic test case, and is verified using Cramér-Rao bound analysis.
Address Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China; Beijing Define Technology Co., Ltd, Beijing, China; Hefei Institute for Public Safety Research, Tsinghua University, Hefei, China
Corporate Author Thesis
Publisher Iscram Place of Publication Albi, France Editor Tina Comes, F.B., Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Analytical Modeling and Simulation Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1998
Share this record to Facebook
 

 
Author (up) Yan Wang; Hong Huang; Wei Zhu
Title Stochastic source term estimation of HAZMAT releases: algorithms and uncertainty Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Bayesian inference; emergency response; hazardous material releases; source term estimation; uncertainty
Abstract Source term estimation (STE) of hazardous material (HAZMAT) releases is critical for emergency response. Such problem is usually solved with the aid of atmospheric dispersion modelling and inversion algorithms accompanied with a variety of uncertainty, including uncertainty in atmospheric dispersion models, uncertainty in meteorological data, uncertainty in measurement process and uncertainty in inversion algorithms. Bayesian inference methods provide a unified framework for solving STE problem and quantifying the uncertainty at the same time. In this paper, three stochastic methods for STE, namely Markov chain Monte Carlo (MCMC), sequential Monte Carlo (SMC) and ensemble Kalman filter (EnKF), are compared in accuracy, time consumption as well as the quantification of uncertainty, based on which a kind of flip ambiguity phenomenon caused by various uncertainty in STE problems is pointed out. The advantage of non-Gaussian estimation methods like SMC is emphasized.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1194
Share this record to Facebook
 

 
Author (up) Yue Guan; Shifei Shen; Hong Huang
Title Assessment of the radiation doses to the public from the cesium in oceans after Fukushima Nuclear Accident Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Tagged Fukushima NPP; numerical simulation; radiation dose; ROMS
Abstract A great number of radioactive cesium were released into sea water after Fukushima Accident. We modified the Regional Oceanic Modelling System (ROMS) to reproduce the dispersion process of the cesium in oceans. The simulated water concentration was in good agreement with observation. In order to explore the nuclear impact of these contaminant in ocean, we established a food web model to calculate the concentration in marine organisms and assess the internal dose rate to the public. The estimated internal dose rate is small compared with the recommended limit by International Atomic Energy Agency (IAEA). Then, we employed the Monte Carlo N Particle Transport Code (MCNP) to calculate the transfer coefficient. The external dose rate could be estimated by this coefficient and simulated water concentration.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1196
Share this record to Facebook