|   | 
Details
   web
Records
Author (up) Cornelia Caragea; Anna Squicciarini; Sam Stehle; Kishore Neppalli; Andrea H. Tapia
Title Mapping moods: Geo-mapped sentiment analysis during hurricane sandy Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 642-651
Keywords Data mining; Disasters; Hurricanes; Information systems; Disaster-related geo-tagged tweets; Online reviews; Online social networkings; Sentiment analysis; Sentiment classification; Social networking sites; Social networking (online)
Abstract Sentiment analysis has been widely researched in the domain of online review sites with the aim of generating summarized opinions of product users about different aspects of the products. However, there has been little work focusing on identifying the polarity of sentiments expressed by users during disaster events. Identifying sentiments expressed by users in an online social networking site can help understand the dynamics of the network, e.g., the main users' concerns, panics, and the emotional impacts of interactions among members. Data produced through social networking sites is seen as ubiquitous, rapid and accessible, and it is believed to empower average citizens to become more situationally aware during disasters and coordinate to help themselves. In this work, we perform sentiment classification of user posts in Twitter during the Hurricane Sandy and visualize these sentiments on a geographical map centered around the hurricane. We show how users' sentiments change according not only to users' locations, but also based on the distance from the disaster.
Address Computer Science and Engineering, University of North Texas, Denton, TX-76203, United States; Information Sciences and Technology, Pennsylvania State University, University Park, PA-16801, United States
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Social Media in Crisis Response and Management Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 372
Share this record to Facebook
 

 
Author (up) Hongmin Li; Nicolais Guevara; Nic Herndon; Doina Caragea; Kishore Neppalli; Cornelia Caragea; Anna Squicciarini; Andrea H. Tapia
Title Twitter Mining for Disaster Response: A Domain Adaptation Approach Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings – 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Disaster Response; domain adaptation; tweet classification
Abstract Microblogging data such as Twitter data contains valuable information that has the potential to help improve the speed, quality, and efficiency of disaster response. Machine learning can help with this by prioritizing the tweets with respect to various classification criteria. However, supervised learning algorithms require labeled data to learn accurate classifiers. Unfortunately, for a new disaster, labeled tweets are not easily available, while they are usually available for previous disasters. Furthermore, unlabeled tweets from the current disaster are accumulating fast. We study the usefulness of labeled data from a prior source disaster, together with unlabeled data from the current target disaster to learn domain adaptation classifiers for the target. Experimental results suggest that, for some tasks, source data itself can be useful for classifying target data. However, for tasks specific to a particular disaster, domain adaptation approaches that use target unlabeled data in addition to source labeled data are superior.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Social Media Studies Expedition Conference ISCRAM 2015 Conference Proceedings – 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1234
Share this record to Facebook
 

 
Author (up) Venkata Kishore Neppalli; Cornelia Caragea; Doina Caragea
Title Deep Neural Networks versus Naive Bayes Classifiers for Identifying Informative Tweets during Disasters Type Conference Article
Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018
Volume Issue Pages 677-686
Keywords deep neural networks, naive bayes classifiers, handcrafted features
Abstract In this paper, we focus on understanding the effectiveness of deep neural networks by comparison with the effectiveness of standard classifiers that use carefully engineered features. Specifically, we design various feature sets (based on tweet content, user details and polarity clues) and use these feature sets individually or in various combinations, with Naïve Bayes classifiers. Furthermore, we develop neural models based on Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) with handcrafted architectures. We compare the two types of approaches in the context of identifying informative tweets posted during disasters, and show that the deep neural networks, in particular the CNN networks, are more effective for the task considered.
Address
Corporate Author Thesis
Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium
Track Social Media Studies CO - Expedition Conference
Notes Approved no
Call Number Serial 2141
Share this record to Facebook
 

 
Author (up) Venkata Kishore Neppalli; Murilo Cerqueira Medeiros; Cornelia Caragea; Doina Caragea; Andrea Tapia; Shane Halse
Title Retweetability Analysis and Prediction during Hurricane Sandy Type Conference Article
Year 2016 Publication ISCRAM 2016 Conference Proceedings – 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016
Volume Issue Pages
Keywords Twitter; Retweetability Analysis; Retweetability Prediction; Hurricane Sandy; Disaster Events
Abstract Twitter is a very important source for obtaining information, especially during events such as natural disasters. Users can spread information in Twitter either by crafting new posts, which are called “tweets,” or by using retweet mechanism to re-post the previously created tweets. During natural disasters, identifying how likely a tweet is to be highly retweeted is very important since it can help promote the spread of good information in a network such as Twitter, as well as it can help stop the spread of misinformation, when corroborated with approaches that identify trustworthy information or misinformation, respectively. In this paper, we present an analysis on retweeted tweets to determine several aspects affecting retweetability. We then extract features from tweets’ content and user account information and perform experiments to develop models that automatically predict the retweetability of a tweet in the context of the Hurricane Sandy.
Address
Corporate Author Thesis
Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3388 ISBN 978-84-608-7984-9 Medium
Track Social Media Studies Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 1389
Share this record to Facebook