|   | 
Author Nilani Algiriyage; Raj Prasanna; Kristin Stock; Emma Hudson-Doyle; David Johnston; Minura Punchihewa; Santhoopa Jayawardhana
Title Towards Real-time Traffic Flow Estimation using YOLO and SORT from Surveillance Video Footage Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 40-48
Keywords Computer Vision, Traffic Flow, YOLOv4, CCTV Big Data
Abstract Traffic emergencies and resulting delays cause a significant impact on the economy and society. Traffic flow estimation is one of the early steps in urban planning and managing traffic infrastructure. Traditionally, traffic flow rates were commonly measured using underground inductive loops, pneumatic road tubes, and temporary manual counts. However, these approaches can not be used in large areas due to high costs, road surface degradation and implementation difficulties. Recent advancement of computer vision techniques in combination with freely available closed-circuit television (CCTV) datasets has provided opportunities for vehicle detection and classification. This study addresses the problem of estimating traffic flow using low-quality video data from a surveillance camera. Therefore, we have trained the novel YOLOv4 algorithm for five object classes (car, truck, van, bike, and bus). Also, we introduce an algorithm to count the vehicles using the SORT tracker based on movement direction such as ``northbound'' and ``southbound'' to obtain the traffic flow rates. The experimental results, for a CCTV footage in Christchurch, New Zealand shows the effectiveness of the proposed approach. In future research, we expect to train on large and more diverse datasets that cover various weather and lighting conditions.
Address Massey University; Massey University; Massey University; Joint Centre for Disaster Research, Massey University; Joint Center of Disaster Research, Massey University Wellington; University of Kelaniya; Univerity of Kelaniya
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track (up) AI and Intelligent Systems for Crises and Risks Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes rangika.nilani@gmail.com Approved no
Call Number ISCRAM @ idladmin @ Serial 2311
Share this record to Facebook