|   | 
Author Nilani Algiriyage; Rangana Sampath; Raj Prasanna; Kristin Stock; Emma Hudson-Doyle; David Johnston
Title Identifying Disaster-related Tweets: A Large-Scale Detection Model Comparison Type Conference Article
Year 2021 Publication (up) ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 731-743
Keywords Tweet Classification, Machine Learning, Deep Learning, Disasters
Abstract Social media applications such as Twitter and Facebook are fast becoming a key instrument in gaining situational awareness (understanding the bigger picture of the situation) during disasters. This has provided multiple opportunities to gather relevant information in a timely manner to improve disaster response. In recent years, identifying crisis-related social media posts is analysed as an automatic task using machine learning (ML) or deep learning (DL) techniques. However, such supervised learning algorithms require labelled training data in the early hours of a crisis. Recently, multiple manually labelled disaster-related open-source twitter datasets have been released. In this work, we create a large dataset with 186,718 tweets by combining a number of such datasets and evaluate the performance of multiple ML and DL algorithms in classifying disaster-related tweets in three settings, namely ``in-disaster'', ``out-disaster'' and ``cross-disaster''. Our results show that the Bidirectional LSTM model with Word2Vec embeddings performs well for the tweet classification task in all three settings. We also make available the preprocessing steps and trained weights for future research.
Address Massey University; Massey University; Massey University; Massey University; Joint Centre for Disaster Research, Massey University; Joint Center of Disaster Research, Massey University Wellington
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Social Media for Disaster Response and Resilience Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes rangika.nilani@gmail.com Approved no
Call Number ISCRAM @ idladmin @ Serial 2368
Share this record to Facebook