toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shivam Sharma; Cody Buntain pdf  isbn
openurl 
  Title Bang for your Buck: Performance Impact Across Choices in Learning Architectures for Crisis Informatics Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 719-736  
  Keywords Incident Streams; TREC; TRECIS; crisis informatics  
  Abstract Over the years, with the increase in social media engagement, there has been an in increase in various pipelines to analyze, classify and prioritize crisis-related data on various social media platforms. These pipelines utilize various data augmentation methods to counter imbalanced crisis data, sophisticated and off-the-shelf models for training. However, there is a lack of comprehensive study which compares these methods for the various sections of a pipeline. In this study, we split a general crisis-related pipeline into 3 major sections, namely, data augmentation, model selection, and training methodology. We compare various methods for each of these sections and then present a comprehensive evaluation of which section to prioritize based on the results from various pipelines. We compare our results against two separate tasks, information classification and priority scoring for crisis-related tweets. Our results suggest that data augmentation, in general,improves the performance. However, sophisticated, state-of-the-art language models like DeBERTa only show performance gain in information classification tasks, and models like RoBERTa tend to show a consistent performance increase over our presented baseline consisting of BERT. We also show that, though training two separate task-specific BERT models does show better performance than one BERT model with multi-task learning methodology over an imbalanced dataset, multi-task learning does improve performance for more sophisticated model like DeBERTa with a much more balanced dataset after augmentation.  
  Address New Jersey Institute of Technology; New Jersey Institute of Technology  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track (up) Social Media for Crisis Management Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2451  
Share this record to Facebook
 

 
Author Shivam Sharma; Cody Buntain pdf  openurl
  Title An Evaluation of Twitter Datasets from Non-Pandemic Crises Applied to Regional COVID-19 Contexts Type Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 808-815  
  Keywords covid19, twitter, trecis, cross-validation, machine learning, transfer learning  
  Abstract In 2020, we have witnessed an unprecedented crisis event, the COVID-19 pandemic. Various questions arise regarding the nature of this crisis data and the impacts it would have on the existing tools. In this paper, we aim to study whether we can include pandemic-type crisis events with general non-pandemic events and hypothesize that including labeled crisis data from a variety of non-pandemic events will improve classification performance over models trained solely on pandemic events. To test our hypothesis we study the model performance for different models by performing a cross validation test on pandemic only held-out sets for two different types of training sets, one containing only pandemic data and the other a combination of pandemic and non-pandemic crisis data, and comparing the results of the two. Our results approve our hypothesis and give evidence of some crucial information propagation upon inclusion of non-pandemic crisis data to pandemic data.  
  Address New Jersey Institute of Technology; New Jersey Institute of Technology  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track (up) Social Media for Disaster Response and Resilience Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes cbuntain@njit.edu Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2375  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: