|   | 
Details
   web
Records
Author (up) Sérgio Freire; Aneta Florczyk; Stefano Ferri
Title Modeling Day- and Nighttime Population Exposure at High Resolution: Application to Volcanic Risk Assessment in Campi Flegrei Type Conference Article
Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015
Volume Issue Pages
Keywords Campi Flegrei; dasymetric mapping; EMS2013; GHSL; NDPop; Population exposure; volcanic risk
Abstract Improving analyses of population exposure to potential natural hazards, especially sudden ones, requires more detailed geodemographic data. Availability of such information for large areas is limited by specific database requirements and their cost.

This paper introduces and tests a new approach for refining spatio-temporal population distribution at high resolution by combining diverse geoinformation layers. Its value is demonstrated in the context of disaster risk analysis and emergency management by using the data in a real volcanic risk scenario in Campi Flegrei, located within the metropolitan area of Naples, Italy. Results show that there is significant variation in exposure from nighttime to daytime in the study area.

The proposed modeling approach can be applied and customized for other metropolitan areas, ultimately benefiting disaster risk assessment and mitigation.
Address
Corporate Author Thesis
Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9788271177881 Medium
Track Geospatial Data and Geographical Information Science Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management
Notes Approved yes
Call Number Serial 1217
Share this record to Facebook
 

 
Author (up) Sérgio Freire; Daniele Ehrlich; Stefano Ferri
Title Assessing temporal changes in global population exposure and impacts from earthquakes Type Conference Article
Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014
Volume Issue Pages 324-328
Keywords Earthquakes; Hazards; Information systems; Population distribution; Risk assessment; Cities; Global population; Population exposure; Population growth; Seismic intensity; Spatial analysis; Spatiotemporal analysis; Temporal change; Population statistics
Abstract It is frequently conveyed, especially in the media, an idea of “increasing impact of natural hazards” typically attributed to their rising frequency and/or growing vulnerability of populations. However, for certain hazard types, this may be mostly a result of increasing population exposure due to phenomenal global population growth, especially in the most hazardous areas. We investigate temporal changes in potential global population exposure and impacts from earthquakes in the XXth century. Spatial analysis is used to combine historical population distributions with a seismic intensity map. Changes in number of victims were also analyzed, while controlling for the progress in frequency and magnitude of hazard events. There is also a focus on mega-cities and implications of fast urbanization for exposure and risk. Results illustrate the relevance of population growth and exposure for risk assessment and disaster outcome, and underline the need for conducting detailed global mapping of settlements and population distribution.
Address European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Italy
Corporate Author Thesis
Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9780692211946 Medium
Track Geographic Information Science Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number Serial 510
Share this record to Facebook