toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yuanyuan Li; Wenguo Weng; Tao Chen; Hongyong Yuan pdf  isbn
openurl 
  Title A Chinese earthquake database for casualty modelling Type (up) Conference Article
  Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014  
  Volume Issue Pages 493-497  
  Keywords Database systems; Information systems; Models; Risk assessment; Risk perception; Casualty; China; Comprehensive information; Database records; Earthquake database; Earthquake events; Historical earthquakes; Seismic parameters; Earthquakes  
  Abstract In order to conduct empirical casualty modelling in China, Chinese historical earthquake events is the essential basis. However, commonly used casualty databases that focus on Chinese earthquakes and provide comprehensive information rarely exist. Regarding this situation, we derived an earthquake casualty database of Mainland China from authorized Chinese published data sources. The casualty database records 520 earthquake events with magnitude 5.0 and greater where at least one casualty is recorded in the time span from 186 BC through December 2011. Each earthquake case contains information on seismic parameters, deaths tolls, number of heavy injuries and light injuries, as well as areas and population of affected regions from intensity VI to intensity IV. Compared with PAGER-CAT, this casualty database provides 146 unique earthquake events and provides more detailed information on heavy injuries and light injures, as well as areas and exposure population of affected regions. This casualty database is an essential supplement for global casualty databases and provides a basis for earthquake casualty modelling on post-earthquake risk estimation in China.  
  Address Institute of Public Safety Research, Tsinghua University, Beijing, China  
  Corporate Author Thesis  
  Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780692211946 Medium  
  Track Planning, Foresight and Risk Analysis Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 696  
Share this record to Facebook
 

 
Author Lida Huang; Tao Chen; Yan Wang; Hongyong Yuan pdf  isbn
openurl 
  Title Forecasting Daily Pedestrian Flows in the Tiananmen Square Based on Historical Data and Weather Conditions Type (up) Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords APSO-SVR; forecasting; historical data; Pedestrian flows; weather conditions  
  Abstract It is important to forecast the pedestrian flows for organizing crowd activities and making risk assessments. In this article, the daily pedestrian flows in the Tiananmen Square are forecasted based on historical data, the distribution of holidays and weather conditions including rain, wind, temperature, relative humidity, and AQI (Air Quality Index). Three different methods have been discussed and the Support Vector Regression based on the Adaptive Particle Swarm Optimization (APSO-SVR) has been proved the most reliable and accurate model to forecast the daily pedestrian flows. The results of this paper can help to conduct security pre-warning system and enhance emergency preparedness and management for crowd activities.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Planning, Foresight and Risk Analysis Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved yes  
  Call Number Serial 1315  
Share this record to Facebook
 

 
Author Ying Zhao; Mengqi Yuan; Guofeng Su; Tao Chen pdf  isbn
openurl 
  Title Crowd Security Detection based on Entropy Model Type (up) Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords Crowd mutation; crowd security; entropy; warning alarm  
  Abstract Identifying the terror attack, illegal public gathering or other mass events risks by utilizing cameras is an important concern both in crowd security area and in pattern recognition research area. This paper provides a physical entropy model to measure the crowd security level.The entropy model was created by identifying individuals?moving velocity and the related probability. The individuals are represented by Harris Corners in videos, thus to avoid the time-consuming human recognition task. Simulation experiment and video detection experiments were conducted, verified that in the disordered state, the entropy is higher; while in ordered state, the entropy is much lower; when the crowd security has a sudden change, the entropy will change. It was verified that the entropy is the applicable indicator of crowd security. By recognizing the entropy mutation, it is possible to automatically detect the abnormal crowd behavior and to set the warning alarm.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Analytical Modelling and Simulation Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1180  
Share this record to Facebook
 

 
Author Yaping Ma; Hui Zhang; Tao Chen; Rui Yang pdf  isbn
openurl 
  Title Decentralized Evacuation System Based on Occupants Distribution and Building Information Type (up) Conference Article
  Year 2015 Publication ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2015  
  Volume Issue Pages  
  Keywords decentralized system; decision making support system; Evacuation guidance; sensor and network  
  Abstract Effective evacuation is critical for safety of occupants. The exiting evacuation systems lack flexibility and don?t consider the distribution of occupants. It is possible to direct occupants to danger areas or cause congestion in certain areas. In this paper, a decentralized evacuation system is proposed to compute the safest path in real time. The system is composed of fire detection sensors, zone controllers, elevator sensors, human tracking and monitoring systems and dynamic egress signs. All devices are placed at the predetermined locations based on integrated design of the building. The entire building is divided into many basic zones which are operating quite independently, and global information is communicated to neighboring zones and consequently to entire network by zone controllers. The system acts in decentralized fashion. The elevator and dynamic factors are considered in guidance system. Simulations are performed to determine the advantage of the system.  
  Address  
  Corporate Author Thesis  
  Publisher University of Agder (UiA) Place of Publication Kristiansand, Norway Editor L. Palen; M. Buscher; T. Comes; A. Hughes  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9788271177881 Medium  
  Track Decision Support Systems Expedition Conference ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved yes  
  Call Number Serial 1294  
Share this record to Facebook
 

 
Author Pengfei Zhou; Tao Chen; Guofeng Su; Bingxu Hou; Lida Huang pdf  isbn
openurl 
  Title Research on the Forecasting and Risk Analysis Method of Snowmelt Flood Type (up) Conference Article
  Year 2020 Publication ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2020  
  Volume Issue Pages 545-557  
  Keywords Snowmelt Flood, Daily Snowmelt, Snow Water Runoff, Risk Analysis, Forecasting Method.  
  Abstract Risk analysis of snowmelt flood is an urgent demand in cold highland areas. This paper focuses on the method for the rapid and reliable forecast of daily snowmelt, snow water runoff, and snowmelt flood risk. A neural network algorithm is used to calculate snow density distribution, snow depth and snow-water equivalent with the brightness temperature data. Then, daily snowmelt is predicted using the degree-day factor method with the temperature distribution. On this basis, we use the steepest descent method and Manning formula with hydrographic information to simulate snow water runoff. We also propose a method to predict the snowmelt flood risk with the geographic feature and historical flood data. The evaluated risk is compared with monitored data in the Xinjiang Autonomous Region of China, which shows good consistency. At last, we develop a risk analysis system to generate the snowmelt flood risk map and provide risk analysis service.  
  Address Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University; Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University; Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University; Beijing Global Safety Technology Co. Ltd.; Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Amanda Hughes; Fiona McNeill; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-27-51 ISBN 2411-3437 Medium  
  Track Planning, Foresight and Risk Analysis Expedition Conference 17th International Conference on Information Systems for Crisis Response and Management  
  Notes zpf18@mails.tsinghua.edu.cn Approved no  
  Call Number Serial 2252  
Share this record to Facebook
 

 
Author Tinghao Zhang; Lida Huang; Tao Chen; Shuo Bai pdf  openurl
  Title GIS Based Emergency Management Framework for Large-scale Events: A Case Study of the Torch Relay Activity Type (up) Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 503-514  
  Keywords Arcgis, large-scale event, emergency management, epidemic prevention  
  Abstract Due to the high popular concentration of large-scale events, once an emergency (like a stampede) occurs, it will often cause severe casualties. Moreover, since the widespread of the COVID-19, the prevention of the novel coronavirus should also be considered during mass gatherings. How to reduce the probability and potential consequence of emergencies is of great significance. This research designs an emergency management framework using ArcGIS-based geographic information technology for large-scale events. To verify the effectiveness of our framework, we take the Winter Olympic torch relay in university as an example. The paper is mainly divided into two parts, emergency resource allocation and the emergency prevention model. The former part focuses on the site selection of emergency sentries and emergency hospitals during the torch relay. In the latter part, an emergency prevention model is designed for two significant emergencies: stampede and epidemic.  
  Address Tsinghua University; Tsinghua University; Tsinghua University; Tsinghua University; Tsinghua University Hefei  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track Geospatial Technologies and Geographic Information Science for Crisis Management (GIS) Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes zth19@mails.tsinghua.edu.cn Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2351  
Share this record to Facebook
 

 
Author Jingxian Wang; Lida Huang; Guofeng Su; Tao Chen; Chunhui Liu; Xiaomeng Wang pdf  openurl
  Title UAV and GIS Based Real-time Display System for Forest Fire Type (up) Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 527-535  
  Keywords forest fire, forest fire boundary extraction, UAV, GIS, 3D modeling  
  Abstract When a forest fire occurs, the commander cannot obtain information in time, and the rescue command is like groping in the dark. In order to solve the problem, this research establishes a real-time forest fire display system based on UAV and GIS. The UAV is equipped with visible light and thermal imaging cameras to transmit back forest fire scenes in real time. Based on GIS, the system can extract the boundary of the fire field through image processing and 3D modeling technology, and display various forest fire information on the screen. Through image processing and 3D modeling technology, the boundary of the fire field can be extracted and displayed on the screen. We conducted several experiments to test the accuracy and the reliability of the system. The result shows that the accuracy, reliability and real-time capability can be guaranteed in small-scale forest fires.  
  Address Tsinghua university; Tsinghua university; Tsinghua university; Tsinghua university; Beijing Global Safety Technology Co., Ltd.; Beijing Global Safety Technology Co., Ltd.  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track Geospatial Technologies and Geographic Information Science for Crisis Management (GIS) Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes 690069938@qq.com Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2353  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: