|   | 
Details
   web
Record
Author Zijun Long; Richard Mccreadie
Title Automated Crisis Content Categorization for COVID-19 Tweet Streams Type Conference Article
Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021
Volume Issue Pages 667-678
Keywords COVID-19, Tweet Classification, Crisis Management, Deep Learning
Abstract Social media platforms, like Twitter, are increasingly used by billions of people internationally to share information. As such, these platforms contain vast volumes of real-time multimedia content about the world, which could be invaluable for a range of tasks such as incident tracking, damage estimation during disasters, insurance risk estimation, and more. By mining this real-time data, there are substantial economic benefits, as well as opportunities to save lives. Currently, the COVID-19 pandemic is attacking societies at an unprecedented speed and scale, forming an important use-case for social media analysis. However, the amount of information during such crisis events is vast and information normally exists in unstructured and multiple formats, making manual analysis very time consuming. Hence, in this paper, we examine how to extract valuable information from tweets related to COVID-19 automatically. For 12 geographical locations, we experiment with supervised approaches for labelling tweets into 7 crisis categories, as well as investigated automatic priority estimation, using both classical and deep learned approaches. Through evaluation using the TREC-IS 2020 COVID-19 datasets, we demonstrated that effective automatic labelling for this task is possible with an average of 61% F1 performance across crisis categories, while also analysing key factors that affect model performance and model generalizability across locations.
Address University of Glasgow; University of Glasgow
Corporate Author Thesis
Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-949373-61-5 ISBN Medium
Track Social Media for Disaster Response and Resilience Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management
Notes 2452593L@student.gla.ac.uk Approved no
Call Number ISCRAM @ idladmin @ Serial 2363
Share this record to Facebook