toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Michael R. Bartolacci; Christoph Aubrecht; Dilek Ozceylan Aubrecht pdf  isbn
openurl 
  Title A portable base station optimization model for wireless infrastructure deployment in disaster planning and management Type Conference Article
  Year 2014 Publication ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2014  
  Volume Issue Pages 50-54  
  Keywords Base stations; Disaster prevention; Disasters; Information systems; Mathematical models; Optimization; Wireless telecommunication systems; Ad hoc mobile networks; Cellular mobile networks; Disaster planning; Optimization modeling; Real-time management; Wireless communications; Wireless infrastructure deployments; Wireless telecommunications; Emergency services  
  Abstract Disaster response requires communications among all affected parties including emergency responders and the affected populace. Wireless telecommunications, if available through a fixed structure cellular mobile network, satellites, portable station mobile networks and ad hoc mobile networks, can provide this means for such communications. While the deployment of temporary mobile networks and other wireless equipment following disasters has been successfully accomplished by governmental agencies and mobile network providers following previous disasters, there appears to be little optimization effort involved with respect to maximizing key performance measures of the deployment or minimizing overall 'cost' (including time aspects) to deploy. This work-in-progress does not focus on the question of what entity will operate the portable base during a disaster, but on optimizing the placement of mobile base stations or similar network nodes for planning and real time management purposes. An optimization model is proposed for the staging and placement of portable base stations to support disaster relief efforts.  
  Address Pennsylvania State University – Berks, United States; AIT Austrian Institute of Technology, Austria; World Bank, United States; Sakarya University, Turkey  
  Corporate Author Thesis  
  Publisher The Pennsylvania State University Place of Publication University Park, PA Editor S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780692211946 Medium  
  Track Analytic Modeling and Simulation Expedition Conference 11th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 294  
Share this record to Facebook
 

 
Author Mauro Falasca; Christopher W. Zobel; Gary M. Fetter pdf  isbn
openurl 
  Title An optimization model for humanitarian relief volunteer management Type Conference Article
  Year 2009 Publication ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives Abbreviated Journal ISCRAM 2009  
  Volume Issue Pages  
  Keywords Information systems; Mathematical models; Optimization; Conflicting objectives; Humanitarian logistics; Humanitarian relief; Multi criteria decision making; Multicriteria optimization; Optimization modeling; Solution methodology; Workforce management; Decision making  
  Abstract One of the challenges of humanitarian organizations is that there exist limited decision technologies that fit their needs. It has also been pointed out that those organizations experience coordination difficulties with volunteers willing to help. The purpose of this paper is to help address those challenges through the development of a decision model to assist in the management of volunteers. While employee workforce management models have been the topic of extensive research over the past decades, no work has focused on the problem of managing humanitarian relief volunteers. In this paper, we discuss a series of principles from the field of volunteer management and develop a multi criteria optimization model to assist in the assignment of volunteers to tasks. We present an illustrative example and analyze a solution methodology where the decision maker exercises his/her preferences by trading-off conflicting objectives. Conclusions, limitations, and directions for future research are also discussed.  
  Address Dept. of Business Information Technology, Pamplin College of Business, Virginia Tech, 1007 Pamplin Hall, Blacksburg VA, 24061, United States  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Gothenburg Editor J. Landgren, S. Jul  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789163347153 Medium  
  Track Humanitarian Actions and Operations Expedition Conference 6th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 482  
Share this record to Facebook
 

 
Author P. Lin; S.M. Lo pdf  isbn
openurl 
  Title The application of quickest flow problem in urban evacuation planning Type Conference Article
  Year 2005 Publication Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2005  
  Volume Issue Pages 129-130  
  Keywords Geographic information systems; Information systems; Optimization; Analysis and evaluation; Evacuation planning; Evacuation plans; Evacuation routes; Flow problems; Optimization modeling; Time varying; Urban evacuation; Urban planning  
  Abstract The provision of evacuation plan for people living in populated urban area is necessary to reduce the possible casualties under disasters. Time-varying quickest flow problem (TVQFP), which can simultaneously optimize the evacuation schedule, evacuation locations and evacuation routes, is adopted to optimize the evacuation planning of a city to minimize the clearance time of residents in danger. The integration of optimization model with GIS environment enables emergency managers to easily identify possible bottlenecks and to observe evacuation patterns in vivid pictures for further analysis and evaluation.  
  Address Department of Building and Construction, City University of Hong Kong, Hong Kong  
  Corporate Author Thesis  
  Publisher Royal Flemish Academy of Belgium Place of Publication Brussels Editor B. Van de Walle, B. Carle  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9076971099 Medium  
  Track POSTER SESSION Expedition Conference 2nd International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 704  
Share this record to Facebook
 

 
Author Michael R. Bartolacci; Albena Mihovska; Dilek Ozceylan Aubrecht pdf  isbn
openurl 
  Title Optimization modeling and decision support for wireless infrastructure deployment in disaster planning and management Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 674-677  
  Keywords Base stations; Decision support systems; Disaster prevention; Disasters; Equipment; Information dissemination; Information systems; Mobile telecommunication systems; Optimization; Wireless networks; Communication solutions; Disaster planning; Optimization modeling; Real-time management; Wireless communications; Wireless infrastructure deployments; Wireless network optimizations; Wireless technologies; Wireless telecommunication systems  
  Abstract Natural disasters and emergencies create the need for communication between and among the affected populace and emergency responders as well as other parties such as governmental agencies and aid organizations. Such communications include the dissemination of key information such as evacuation orders and locations of emergency shelters. In particular, the coordination of efforts between responding organizations require additional communication solutions that typically rely heavily on wireless communications to complement fixed line infrastructure due to the ease of use and portability. While the deployment of temporary mobile networks and other wireless equipment following disasters has been successfully accomplished by governmental agencies and network providers following previous disasters, there appears to be little optimization effort involved with respect to maximizing key performance measures of the deployment or minimizing overall cost to deploy. This work does not focus on the question of what entity will operate the portable base stations or wireless equipment utilized during a disaster, only the question of optimizing placement for planning and real time management purposes. This work examines current wireless network optimization models and points out that none of them include the necessary variables for a disaster planning or emergency deployment context. Due to the fact that the choice of wireless technology impacts the nature of an overall model, a brief discussion of exemplar wireless technologies is included. The work also proposes criteria that must be taken into account in order to have a useful model for deployment of mobile base stations and related wireless communications equipment.  
  Address Penn State University, Berks, United States; CTIF-Aalborg Univerity, Denmark; Sakarya University, Turkey  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Analytical Modelling and Simulation Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 295  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: