|   | 
Details
   web
Records
Author Simone De Kleermaeker; Jan Verkade
Title A decision support system for effective use of probability forecasts Type Conference Article
Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013
Volume Issue Pages 290-295
Keywords Artificial intelligence; Decision support systems; Forecasting; Hydrology; Information systems; Uncertainty analysis; Water management; Decision support system (dss); Hydrological forecast; Management decisions; Multidimensional problems; Predictive uncertainty; Probabilistic forecasts; Probability forecasts; Risk-based decisions; Decision making
Abstract Often, water management decisions are based on hydrological forecasts, which are affected by inherent uncertainties. It is increasingly common for forecasters to make explicit estimates of these uncertainties. Associated benefits include the decision makers' increased awareness of forecasting uncertainties and the potential for risk-based decision-making. Also, a more strict separation of responsibilities between forecasters and decision maker can be made. A recent study identified some issues related to the effective use of probability forecasts. These add a dimension to an already multi-dimensional problem, making it increasingly difficult for decision makers to extract relevant information from a forecast. Secondly, while probability forecasts provide a necessary ingredient for risk-based decision making, other ingredients may not be fully known, including estimates of flood damage and costs and effect of damage reducing measures. Here, we present suggestions for resolving these issues and the integration of those solutions in a prototype decision support system (DSS). A pathway for further development is outlined.
Address Deltares, Delft, Netherlands; Water Management Centre of Netherlands, Ministry of Infrastructure and the Environment, Storm Surge Forecasting Service, Lelystad, Netherlands; Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9783923704804 Medium
Track Decision Support Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number (up) Serial 432
Share this record to Facebook
 

 
Author Tomoichi Takahashi
Title Agent-based disaster simulation evaluation and its probability model interpretation Type Conference Article
Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007
Volume Issue Pages 369-376
Keywords Disasters; Probability; Agent based simulation; Agent based social simulation; Agent-based approach; Agent-based social simulations; Disaster simulation; Evaluation method; Local government; Probability modeling; Computer simulation
Abstract Agent-based simulations enable the simulation of social phenomenon by representing human behaviors using agents. Human actions such as evacuating to safe havens or extinguishing fires in disaster areas are important during earthquakes. The inclusion of human actions in calculating the damage at disaster sites provides useful data to local governments for planning purposes. In order to practically apply these simulation results, these results should be tested using actual data. Further, these results should be analyzed and explained in a manner that people who are not agent programmers can also understand easily. First, the possibility of applying agent-based approaches to social tasks is shown by comparing the simulation results with those obtained from other methods. Next, we propose a method to present agent behaviors using a probability model and discuss the results of applying this method to the RoboCup Rescue simulation data. These will delve into future research topics for developing agent based social simulations to practical ones.
Address Meijo University, Japan
Corporate Author Thesis
Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium
Track ASCM Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management
Notes Approved no
Call Number (up) Serial 988
Share this record to Facebook