toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author George H. Bressler; Murray E. Jennex; Eric G. Frost pdf  isbn
openurl 
  Title X24 Mexico: Stronger together Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Scheduling; Crisis response; Disaster scenario; Eastern Europe; Self-organize; Social media; Southern California; Web 2.0 tools; Work in progress; Information systems  
  Abstract Can populations self-organize a crisis response? This is a work in progress report on Exercise 24, X24, Mexico, a follow up to the first two exercises, X24 and X24 Europe The X24 exercises used a variety of free and low-cost social media and web 2.0 tools to organize, plan, and manage local and international expertise and organizations in the response to a preset disaster scenario. The first X24 focused on Southern California, while the second X24, X24 Europe, focused on the Balkan area of Eastern Europe. These exercises involved over 12,500 participants for X24 while X24 Europe had over 49,000 participants. This paper presents an overview of the recently completed X24 Mexico exercise, as well as the preliminary results. © 2012 ISCRAM.  
  Address San Diego State University, United States  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Open Track Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 84  
Share this record to Facebook
 

 
Author Cendrella Chahine; Thierry Vidal; Mohamad El Falou; François Pérès pdf  isbn
openurl 
  Title Multi-Agent Dynamic Planning Architectures for Crisis Rescue Plans Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 243-255  
  Keywords Multi-agent systems; planning and scheduling; uncertainty; coordination  
  Abstract We are interested in rescue management in crises such as in terrorist attacks. Today, there are emergency plans that take into account all the stakeholders involved in a crisis depending on the event type, magnitude and place. Unfortunately, they do not anticipate the evolution of the crisis situation such as traffic and hospital overcrowding. In addition, decisions are taken after the information has been passed from the operational level to higher levels. This work focuses on the operational level of the emergency plan. What will happen if the actors at this level, can make certain decisions without escalating the information to higher levels? To answer this question, a multi-agent dynamic planning approach is proposed and it will be tested in two different architectures in order to see how much autonomy can be given to an agent and how they coordinate to save the victims.  
  Address ULF Liban/LGP-ENIT; LGP-ENIT; ULF Tripoli; LGP-ENIT  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track AI and Intelligent Systems for Crises and Risks Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2414  
Share this record to Facebook
 

 
Author Trishan R. De Lanerolle; Ralph A. Morelli; Norman Danner; Danny Krizanc; Gary Parker; Ozgur Izmirli pdf  isbn
openurl 
  Title Creating an academic community to build Humanitarian FOSS: A progress report Type Conference Article
  Year 2008 Publication Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2008  
  Volume Issue Pages 337-341  
  Keywords Information systems; Scheduling; Software engineering; Students; Academic; Collaborations; Foss; H-Foss; Humanitarian; Open sources; Open source software  
  Abstract This paper describes The Humanitarian FOSS Project, a National Science Foundation funded effort to help revitalize undergraduate computing education by getting students and faculty involved in building open source software that benefits the community.  
  Address Trinity College, Hartford CT, United States; Wesleyan University, Middletown CT, United States; Connecticut College, New London CT, United States  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Washington, DC Editor F. Fiedrich, B. Van de Walle  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780615206974 Medium  
  Track Information Systems for Humanitarian Operations Expedition Conference 5th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 437  
Share this record to Facebook
 

 
Author Gerhard Rauchecker; Guido Schryen pdf  isbn
openurl 
  Title Decision Support for the Optimal Coordination of Spontaneous Volunteers in Disaster Relief Type Conference Article
  Year 2018 Publication ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2018  
  Volume Issue Pages 69-82  
  Keywords Coordination of spontaneous volunteers, volunteer coordination system, decision support, scheduling optimization model, linear programming  
  Abstract When responding to natural disasters, professional relief units are often supported by many volunteers which are not affiliated to humanitarian organizations. The effective coordination of these volunteers is crucial to leverage their capabilities and to avoid conflicts with professional relief units. In this paper, we empirically identify key requirements that professional relief units pose on this coordination. Based on these requirements, we suggest a decision model. We computationally solve a real-world instance of the model and empirically validate the computed solution in interviews with practitioners. Our results show that the suggested model allows for solving volunteer coordination tasks of realistic size near-optimally within short time, with the determined solution being well accepted by practitioners. We also describe in this article how the suggested decision support model is integrated in the volunteer coordination system, which we develop in joint cooperation with a disaster management authority and a software development company.  
  Address  
  Corporate Author Thesis  
  Publisher Rochester Institute of Technology Place of Publication Rochester, NY (USA) Editor Kees Boersma; Brian Tomaszeski  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-0-692-12760-5 Medium  
  Track Analytical Modeling and Simulation Expedition Conference ISCRAM 2018 Conference Proceedings - 15th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 2091  
Share this record to Facebook
 

 
Author Haya Aldossary; Graham Coates pdf  openurl
  Title Multi-objective Optimization for Coordinating Emergency Resources in Multiple Mass Casualty Incidents Type Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 1015-1027  
  Keywords Co-ordination, Neighborhood Search Algorithm, Optimization, Scheduling  
  Abstract Effective co-ordination between resource-constrained emergency services during multiple mass casualty incidents (MCIs) plays a significant role in the response phase. In such a case, the co-ordination problem needs to be solved, namely the allocation of responders-to-incidents, responders-to-casualties, vehicles to travel to casualties at incidents and transport casualties to hospitals, and task assignment to responders and vehicles. A Neighborhood Search Algorithm (NSA) is employed to solve the co-ordination problem with the aim of reducing the suffering of casualties, with varying injuries and health classifications. An application of the NSA is enabled using a hypothetical case study of MCIs including three scenarios in a major urban area of the UK. The experiments conducted show the effectiveness of using different approaches to generate an initial response plan, and the performance of the NSA in developing a final optimized plan.  
  Address Newcastle University; Newcastle University  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track Other Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes h.aldossary2@newcastle.ac.uk Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2393  
Share this record to Facebook
 

 
Author Linda Plotnick; Elizabeth Avery Gomez; Connie White; Murray Turoff pdf  isbn
openurl 
  Title Furthering development of a unified emergency scale using Thurstone's Law of Comparative Judgment: A progress report Type Conference Article
  Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007  
  Volume Issue Pages 411-418  
  Keywords Risk management; Scheduling; Emergency management; Event-specific; Information sources; Local community; Paired comparison; Progress report; Public safety; Thurstone's Law of Comparative Judgment; Disasters  
  Abstract In disasters, local civilians on or near the scene, are often first to respond and give aid. Therefore, the public needs to be well-informed with accurate, time critical information. However, a primary information source is event-specific scales that are inconsistent in their categorization and measurement, adding confusion to public responsiveness. These scales are not extendable to new emergencies in a changing world. We argue for development of a unified emergency scale to facilitate communication and understanding. This scale will inform local communities with regional community-specific information, and will be extendable for further use by professional responders. Research in progress elicited 15 dimensions of an emergency using a Delphi-like process and then ranked the dimensions by importance utilizing Thurstone's Law of Comparative Judgment. Contributions of this paper are to highlight the need for an unequivocal, unified scale and further its development.  
  Address Information Systems Department, New Jersey Institute of Technology, Newark, NJ, United States  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium  
  Track PEPA Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 845  
Share this record to Facebook
 

 
Author Adriaan Ter Mors; Xiaoyu Mao; Nicola Roos; Cees Witteveen; Alfons H. Salden pdf  isbn
openurl 
  Title Multi-agent system support for scheduling aircraft de-icing Type Conference Article
  Year 2007 Publication Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers Abbreviated Journal ISCRAM 2007  
  Volume Issue Pages 467-478  
  Keywords Aircraft; Emergency services; Intelligent agents; Multi agent systems; Scheduling; Snow and ice removal; Aircraft deicing; Coordination; Coordination strategy; Decision mechanism; Emergency responders; Emergency situation; Incident Management; Unexpected incidents; Aircraft accidents  
  Abstract Results from disaster research suggest that methods for coordination between individual emergency responders and organizations should recognize the independence and autonomy of these actors. These actor features are key factors in effective adaptation and improvisation of response to emergency situations which are inherently uncertain. Autonomy and adaptability are also well-known aspects of a multi-agent system (MAS). In this paper we present two MAS strategies that can effectively handle aircraft deicing incidents. These MAS strategies help improve to prevent and reduce e.g. airplane delays at deicing stations due to changing weather conditions or incidents at the station, where aircraft agents adopting pre-made plans that would act on behalf of aircraft pilots or companies, would only create havoc. Herein each agent using its own decision mechanism deliberates about the uncertainty in the problem domain and the preferences (or priorities) of the agents. Furthermore, taking both these issues into account each proposed MAS strategy outperforms a naive first-come, first-served coordination strategy. The simulation results help pilots and companies taking decisions with respect to the scheduling of the aircraft for deicing when unexpected incidents occur: they provide insights in the impacts and means for robust selection of incident-specific strategies on e.g. deicing station delays of (individual) aircraft.  
  Address Almende B.V., Technische Universiteit Delft, Netherlands; Almende B.V., Universiteit Maastricht, Netherlands; MICC, IKAT, Universiteit Maastricht, Netherlands; EWI, Technische Universiteit Delft, Netherlands; Almende B.V., Netherlands  
  Corporate Author Thesis  
  Publisher Information Systems for Crisis Response and Management, ISCRAM Place of Publication Delft Editor B. Van de Walle, P. Burghardt, K. Nieuwenhuis  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9789054874171; 9789090218717 Medium  
  Track IMPR Expedition Conference 4th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1003  
Share this record to Facebook
 

 
Author David J. Wald pdf  isbn
openurl 
  Title Adding secondary hazard and ground-truth observations to PAGER's loss modeling Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 586-591  
  Keywords Disasters; Earthquake effects; Information systems; Scheduling; Earthquake damages; Earthquake location; Pager; Scientific analysis; Shakecast; Shakemap; Source characteristics; U.s. geological surveys; Hazards  
  Abstract A rapid, holistic view of earthquake disasters begins with earthquake location and magnitude, alerted by seismic networks. The initial source characteristics, along with any available ground-shaking observations, can be used to rapidly estimate the shaking extent, its severity (e.g., ShakeMap), and its likely impact to society, for example, employing the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response, or PAGER, system. When serous impacts are likely, PAGER's impact-based alerts can, in turn, begin the process of primary response at the local, national, or international level, and the process of reconnaissance via social media, the mainstream media, scientific analyses, and remotely-sensed and ground-truth observations. In this work-in-progress report, we describe our initial efforts to incorporate event-specific ground-truth observations and model secondary ground-failure hazards back into the loss-modeling domain in order to provide a more holistic view each earthquake disaster.  
  Address U.S. Geological Survey, United States  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Innovations in Research Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1056  
Share this record to Facebook
 

 
Author Felix Wex; Guido Schryen; Dirk Neumann pdf  isbn
openurl 
  Title Operational emergency response under informational uncertainty: A fuzzy optimization model for scheduling and allocating rescue units Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Artificial intelligence; Decision support systems; Fuzzy set theory; Information systems; Monte Carlo methods; Optimization; Computational evaluation; Coordination; Decision support models; Fuzzy optimization model; Heuristic solutions; Informational uncertainty; Linguistic assessment; Operational emergency; Scheduling  
  Abstract Coordination deficiencies have been identified after the March 2011 earthquakes in Japan in terms of scheduling and allocation of resources, with time pressure, resource shortages, and especially informational uncertainty being main challenges. We suggest a decision support model that accounts for these challenges by drawing on fuzzy set theory and fuzzy optimization. Based on requirements from practice and the findings of our literature review, the decision model considers the following premises: incidents and rescue units are spatially distributed, rescue units possess specific capabilities, processing is non-preemptive, and informational uncertainty through linguistic assessments is predominant when on-site units vaguely report about incidents and their attributes, or system reports are not exact. We also suggest a Monte Carlo-based heuristic solution procedure and conduct a computational evaluation of different scenarios. We benchmark the results of our heuristic with results yielded through applying a greedy approach. The results indicate that using our Monte Carlo simulation to solve the decision support model inspired by fuzzy set theory can substantially reduce the overall harm. © 2012 ISCRAM.  
  Address Albert-Ludwigs-Universität Freiburg, Germany; Universität Regensburg, Germany  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Intelligent Systems Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 238  
Share this record to Facebook
 

 
Author Duncan T. Wilson; Glenn I. Hawe; Graham Coates; Roger S. Crouch pdf  isbn
openurl 
  Title Scheduling response operations under transport network disruptions Type Conference Article
  Year 2013 Publication ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2013  
  Volume Issue Pages 683-687  
  Keywords Algorithms; Decision theory; Disasters; Emergency services; Information systems; Optimization; Stochastic systems; Disaster response; Optimization algorithms; Predictive performance; Real-time information; Road transport networks; Routing; Scheduling problem; Transport networks; Scheduling  
  Abstract Modeling the complex decision problems faced in the coordination of disaster response as a scheduling problem to be solved using an optimization algorithm has the potential to deliver efficient and effective support to decision makers. However, much of the utility of such a model lies in its ability to accurately predict the outcome of any proposed solution. The stochastic nature of the disaster response environment can make such prediction difficult. In this paper we examine the effect of unknown disruptions to the road transport network on the utility of a disaster response scheduling model. The effects of several levels of disruption are measured empirically and the potential of using real-time information to revise model parameters, and thereby improve predictive performance, is evaluated.  
  Address School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, United Kingdom  
  Corporate Author Thesis  
  Publisher Karlsruher Institut fur Technologie Place of Publication KIT; Baden-Baden Editor T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 9783923704804 Medium  
  Track Intelligent Systems Expedition Conference 10th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1093  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: