toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Boni Su; Hong Huang; Zhiqiang Wang; Nan Zhang; Wei Zhu; Xinfeng Wei pdf 
  Title Urban pluvial flood risk assessment based on scenario simulation Type Conference Article
  Year 2016 Publication ISCRAM 2016 Conference Proceedings 13th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2016  
  Volume Issue Pages  
  Keywords  
  Abstract In this study, urban pluvial flood risk is studied in an actual study area using scenario simulation method based on hydrodynamics. Real weather data and GIS (Geographic Information System) data are adopted to make the results reliable. A region in Haidian District of Beijing is selected as the study area. All the rainfall scenarios (about 200 scenarios) during an 8-year period (from January 1, 2008 to December 31, 2015) are obtained from hourly precipitation data. These rainfall scenarios are used as input for numerical simulations. Spatial-temporal distributions of water depth are obtained through numerical simulation base on SWEs (Shallow-Water Equations). GPU computing technique is applied to increase simulation speed greatly. Influence of rainfall parameters on flood water depth is analyzed. The results show that water depth becomes higher if rainfall duration and average rainfall intensity increase. Moreover, situation of water depth is not only related to overall parameters like rainfall duration or rainfall intensity, but also related to other details of rainfall. Water depth exceedance probability curves of every location and every building are obtained, and different characteristics of the curves are discussed. Finally, the effect of water depth exceedance probability curves of buildings on designing building foundation height is shown. This study is helpful to the risk assessments of urban pluvial flood.  
  Address  
  Corporate Author Thesis  
  Publisher Federal University of Rio de Janeiro Place of Publication Rio de Janeiro, Brasil Editor A. Tapia; P. Antunes; V.A. Bañuls; K. Moore; J. Porto  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-84-608-7984-9 Medium  
  Track Poster Session Expedition Conference 13th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 1422  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: