|   | 
Author (up) Hongmin Li; Doina Caragea; Cornelia Caragea
Title Towards Practical Usage of a Domain Adaptation Algorithm in the Early Hours of a Disaster Type Conference Article
Year 2017 Publication Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management Abbreviated Journal ISCRAM 2017
Volume Issue Pages 692-704
Keywords Twitter; Domain adaptation; Disaster; Classification
Abstract Many machine learning techniques have been proposed to reduce the information overload in social media data during an emergency situation. Among such techniques, domain adaptation approaches present greater potential as compared to supervised algorithms because they donít require labeled data from the current disaster for training. However, the use of domain adaptation approaches in practice is sporadic at best. One reason is that domain adaptation algorithms have parameters that need to be tuned using labeled data from the target disaster, which is presumably not available. To address this limitation, we perform a study on one domain adaptation approach with the goal of understanding how much source data is needed to obtain good performance in a practical situation, and what parameter values of the approach give overall good performance. The results of our study provide useful insights into the practical application of domain adaptation algorithms in real crisis situations.
Address Kansas State University; University of North Texas
Corporate Author Thesis
Publisher Place of Publication Albi, France Editor Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, Aurélie Montarnal, eds
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2411-3387 ISBN Medium
Track Social Media Studies Expedition Conference 14th International Conference on Information Systems for Crisis Response And Management
Notes Approved no
Call Number Serial 1503
Share this record to Facebook