toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Sébastien Tremblay; Peter Berggren; Martin Holmberg; Rego Granlund; Marie-Eve Jobidon; Paddy Turner pdf  isbn
openurl 
  Title A multiteam international simulation of joint operations in crisis response Type Conference Article
  Year 2012 Publication ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal ISCRAM 2012  
  Volume Issue Pages  
  Keywords Deforestation; Emergency services; Fires; Human resource management; Information systems; Virtual reality; Collaborative process; Experimental platform; Horizontal organizations; Organizational structures; Quantitative measures; Shared understanding; Simulation environment; Situation assessment; Information management; Information Retrieval; Management  
  Abstract Concepts such as trust, shared understanding, cultural differences, mental workload, and organizational structure all impact upon the effectiveness of an organization (e.g., Tindale & Kameda, 2000), and even more so in the context of large scale multinational operations (e.g, Smith, Granlund, & Lindgen, 2010). In order to study these concepts we plan a multinational, distributed experiment with participants from three nations collaborating in the same virtual environment: Canadian, British, and Swedish participants will work together as part of a multinational MTS to deal with a complex task and gain control of a crisis situation. Empirical research on MTS remains limited (see, e.g., DeChurch & Marks, 2006) particularly at the multinational level where the investigation of MTS has been so far focused on case studies and exercises (e.g., Goodwin, Essens, & Smith, 2012). Therefore, there is a need to empirically study multinational MTS in order to assess the specific issues that multinational operations face, notably cultural and languages differences. The simulation environment used as experimental platform for this project is C3Fire (www.c3fire.org, Granlund & Granlund, 2011). C3Fire creates an environment whereby teams must work together to resolve a crisis in the firefighting domain, with the goal of evacuating people in critical areas, putting out the forest fire, and protecting buildings and other areas of value from the burning forest fire. This platform makes it possible to study participants' collaborative processes when dealing with a set of crisis scenarios in the context of a simulated emergency response situation. To deal efficiently with the crisis management operation, participants need to prioritize between different objectives, identify and protect critical areas, and plan and implement activities based on given resources. All these tasks are distributed between team members, compelling participants to exchange information and coordinate within and between teams to execute the task. The task is divided into three areas of responsibility as follows: 1) Information and Planning, responsible for situation assessment and providing the operating picture; 2) Operation and Logistic, responsible for intervention and resource management; and 3) Search and Rescue, responsible for research and management of civilians. C3Fire is designed to: 1) achieve an optimal compromise between internal and external validity; 2) show flexibility in scenario configuration (spectrum of units and roles – including search and rescue functions; Tremblay et al., 2010), allowing researchers to capture emergency response and crisis management and rapid response planning; 3) be highly configurable for testing many different types of teams (e.g., hierarchical vs. horizontal organizations); and 4) readily provide objective, non-intrusive metrics for assessing teamwork effectiveness (including macrocognitive functions and team processes) as well as quantitative measures of task performance (that take into account conflicting mission goals). © 2012 ISCRAM.  
  Address Université Laval, QC, Canada; FOI, Linkoping, Sweden; FHS, Stockholm, Sweden; Santa Anna Research Institute, Sweden; Defence R and D Canada, Toronto, ON, Canada; Cranfield University, Defence Academy, United Kingdom  
  Corporate Author Thesis  
  Publisher Simon Fraser University Place of Publication Vancouver, BC Editor L. Rothkrantz, J. Ristvej, Z.Franco  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 2411-3387 ISBN 9780864913326 Medium  
  Track Poster Session Expedition Conference 9th International ISCRAM Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number Serial 218  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: