toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Congcong Wang; Paul Nulty; David Lillis pdf  openurl
  Title Transformer-based Multi-task Learning for Disaster Tweet Categorisation Type Conference Article
  Year 2021 Publication ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2021  
  Volume Issue Pages 705-718  
  Keywords Disaster Response, Tweet Analysis, Transformers, Natural Language Processing  
  Abstract Social media has enabled people to circulate information in a timely fashion, thus motivating people to post messages seeking help during crisis situations. These messages can contribute to the situational awareness of emergency responders, who have a need for them to be categorised according to information types (i.e. the type of aid services the messages are requesting). We introduce a transformer-based multi-task learning (MTL) technique for classifying information types and estimating the priority of these messages. We evaluate the effectiveness of our approach with a variety of metrics by submitting runs to the TREC Incident Streams (IS) track: a research initiative specifically designed for disaster tweet classification and prioritisation. The results demonstrate that our approach achieves competitive performance in most metrics as compared to other participating runs. Subsequently, we find that an ensemble approach combining disparate transformer encoders within our approach helps to improve the overall effectiveness to a significant extent, achieving state-of-the-art performance in almost every metric. We make the code publicly available so that our work can be reproduced and used as a baseline for the community for future work in this domain.  
  Address University College Dublin; University College Dublin; University College Dublin  
  Corporate Author Thesis  
  Publisher Virginia Tech Place of Publication Blacksburg, VA (USA) Editor Anouck Adrot; Rob Grace; Kathleen Moore; Christopher W. Zobel  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 978-1-949373-61-5 ISBN Medium  
  Track Social Media for Disaster Response and Resilience Expedition Conference 18th International Conference on Information Systems for Crisis Response and Management  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2366  
Share this record to Facebook
Select All    Deselect All
 |   | 

Save Citations:
Export Records: