toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Kiran Zahra; Rahul Deb Das; Frank O. Ostermann; Ross S. Purves pdf  isbn
openurl 
  Title Towards an Automated Information Extraction Model from Twitter Threads during Disasters Type Conference Article
  Year 2022 Publication ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management Abbreviated Journal Iscram 2022  
  Volume Issue Pages 637-653  
  Keywords Social media threads; Text summarization; Disasters; Lexicons; Information extraction models; Word embeddings  
  Abstract Social media plays a vital role as a communication source during large-scale disasters. The unstructured and informal nature of such short individual posts makes it difficult to extract useful information, often due to a lack of additional context. The potential of social media threads– sequences of posts– has not been explored as a source of adding context and more information to the initiating post. In this research, we explored Twitter threads as an information source and developed an information extraction model capable of extracting relevant information from threads posted during disasters. We used a crowdsourcing platform to determine whether a thread adds more information to the initial tweet and defined disaster-related information present in these threads into six themes– event reporting, location, time, intensity, casualty and damage reports, and help calls. For these themes, we created the respective thematic lexicons from WordNet. Moreover, we developed and compared four information extraction models trained on GloVe, word2vec, bag-of-words, and thematic bag-of-words to extract and summarize the most critical information from the threads. Our results reveal that 70 percent of all threads add information to the initiating post for various disaster-related themes. Furthermore, the thematic bag-of-words information extraction model outperforms the other algorithms and models for preserving the highest number of disaster-related themes.  
  Address University of Zurich; University of Zurich, IBM; University of Twente; University of Zurich  
  Corporate Author Thesis  
  Publisher Place of Publication Tarbes, France Editor Rob Grace; Hossein Baharmand  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2411-3387 ISBN 978-82-8427-099-9 Medium  
  Track Social Media for Crisis Management Expedition Conference  
  Notes Approved no  
  Call Number ISCRAM @ idladmin @ Serial 2444  
Share this record to Facebook
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: