|
Record |
Links |
|
Author  |
Michael R. Bartolacci; Albena Mihovska; Dilek Ozceylan Aubrecht |

|
|
Title |
Optimization modeling and decision support for wireless infrastructure deployment in disaster planning and management |
Type |
Conference Article |
|
Year |
2013 |
Publication |
ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management |
Abbreviated Journal |
ISCRAM 2013 |
|
|
Volume |
|
Issue |
|
Pages |
674-677 |
|
|
Keywords |
Base stations; Decision support systems; Disaster prevention; Disasters; Equipment; Information dissemination; Information systems; Mobile telecommunication systems; Optimization; Wireless networks; Communication solutions; Disaster planning; Optimization modeling; Real-time management; Wireless communications; Wireless infrastructure deployments; Wireless network optimizations; Wireless technologies; Wireless telecommunication systems |
|
|
Abstract |
Natural disasters and emergencies create the need for communication between and among the affected populace and emergency responders as well as other parties such as governmental agencies and aid organizations. Such communications include the dissemination of key information such as evacuation orders and locations of emergency shelters. In particular, the coordination of efforts between responding organizations require additional communication solutions that typically rely heavily on wireless communications to complement fixed line infrastructure due to the ease of use and portability. While the deployment of temporary mobile networks and other wireless equipment following disasters has been successfully accomplished by governmental agencies and network providers following previous disasters, there appears to be little optimization effort involved with respect to maximizing key performance measures of the deployment or minimizing overall cost to deploy. This work does not focus on the question of what entity will operate the portable base stations or wireless equipment utilized during a disaster, only the question of optimizing placement for planning and real time management purposes. This work examines current wireless network optimization models and points out that none of them include the necessary variables for a disaster planning or emergency deployment context. Due to the fact that the choice of wireless technology impacts the nature of an overall model, a brief discussion of exemplar wireless technologies is included. The work also proposes criteria that must be taken into account in order to have a useful model for deployment of mobile base stations and related wireless communications equipment. |
|
|
Address |
Penn State University, Berks, United States; CTIF-Aalborg Univerity, Denmark; Sakarya University, Turkey |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Karlsruher Institut fur Technologie |
Place of Publication |
KIT; Baden-Baden |
Editor |
T. Comes, F. Fiedrich, S. Fortier, J. Geldermann and T. Müller |
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2411-3387 |
ISBN |
9783923704804 |
Medium |
|
|
|
Track |
Analytical Modelling and Simulation |
Expedition |
|
Conference |
10th International ISCRAM Conference on Information Systems for Crisis Response and Management |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
295 |
|
Share this record to Facebook |