Adam Widera, Chiara Fonio, Sandra Lechtenberg, & Bernd Hellingrath. (2018). Measuring Innovations in Crisis Management. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 1051–1062). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Crisis management (CM) organizations regularly face the challenge to assess the potential impact of a change in their socio-technical setup. No matter if a new software, a new tool, a simple workflow or a broader organizational structure become available, CM organizations need to estimate the potential added value under a high degree of uncertainty. In general, the more reliable information about the new solution is available, the more informed the decisions are. One promising way in assessing the potential impact of new CM solutions can be found through its application in an as realistic as possible and an as secure as necessary setup. However, such artificial scenarios like simulation exercises hold the risk of measuring the performance of the solution itself rather than its contribution to the CM operation. In this paper we review the state of the art in measuring crisis management performance, discuss the results in the context of performance measurement in general and present a performance measurement approach supporting a structured assessment of innovative CM solutions applied within collaborative demonstration project.
|
Alexandre Ahmad, Olivier Balet, Jesse Himmelstein, Arjen Boin, Maaike Schaap, Paolo Brivio, et al. (2012). Interactive simulation technology for crisis management and training: The INDIGO project. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: To face the urgent need to train strategic and operational managers in dealing with complex crises, we are researching and developing an innovative decision support system to be used for crisis management and interactive crisis training. This paper provides an overview of current decision-support systems, simulation software and other technologies specifically designed to serve crisis managers. These findings inform the design of a new interactive simulation technology system, where a 3D Common Operational Picture (COP) is shared between tactile digital whiteboard in the command center and mobile devices in the field. © 2012 ISCRAM.
|
Ahmed S. Khalaf, Poom Pianpak, Sultan A. Alharthi, Zahra NaminiMianji, Ruth Torres, Son Tran, et al. (2018). An Architecture for Simulating Drones in Mixed Reality Games to Explore Future Search and Rescue Scenarios. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 971–982). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: The proliferation of unmanned aerial systems (i.e., drones) can provide great value to the future of search and rescue. However, with the increase adoption of such systems, issues around hybrid human-drone team coordination and planning will arise. To address these early challenges, we provide insights into the development of testbeds in the form of mixed reality games with simulated drones. This research presents an architecture to address challenges and opportunities in using drones for search and rescue. On this architecture, we develop a mixed reality game in which human players engage with the physical world and with gameplay that is purely virtual. We expect the architecture to be useful to a range of researchers an practitioners, forming the basis for investigating and training within this unique, new domain.
|
Hina Aman, Pourang Irani, & Hai-Ning Liang. (2012). A review of information communication technology applied on common tasks during times of emergency. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Research in emergency response systems has produced significant literature in a very short span of time. We review a corpus of published works on how Information Communication Technology (ICT) is being utilized and the type of tasks ICT attempts to support in the event of a crisis due to disasters, whether natural or man-made. In our research, we have been able to distinguish eight types of tasks supported by technology during a disaster. We list some of these technologies used by the public, practitioners and researchers to illustrate the current trends of technology usage. We also identify gaps and technology needs that require our attention. Given the increasing frequency and severity of disasters, this research is timely as it (1) contributes to our understanding of the trends of development and technology use during times of crises and (2) identifies potential areas for future work to improve ICT's role during times of emergency. © 2012 ISCRAM.
|
Naveen Ashish, & Sharad Mehrotra. (2010). Community driven data integration for emergency response. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper describes our work in progress on an approach and technology for providing integrated data access in situational awareness applications – particularly for disaster and emergency response. The key new aspect of our work is an approach where information aggregation, processing, and integration capabilities are offered as a service to any new application builder. Further, we provide a framework for possibly reusing prior information integration knowledge, the development of which demands the major fraction of time and complexity in a new application, in a customized fashion for new application. Our overall goal is to provide a framework where integrated access to critical data in an emergency response situation can be enabled very rapidly and by personnel with basic IT and data handling expertise. Our approach, while general purpose, is currently motivated by and grounded in the context of situational awareness systems for incident commander decision support in the fire response domain.
|
Mikael Asplund, Trishan R. De Lanerolle, Christopher Fei, Prasanna Gautam, Ralph A. Morelli, Simin Nadjm-Tehrani, et al. (2010). Wireless ad hoc dissemination for search and rescue. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In search and rescue scenarios local information on victims and other finds needs to be disseminated rapidly to other rescue workers and team leaders. However, post disaster scenarios may imply the collapse of information infrastructure including cellular communication and Internet connectivity. Even if we consider wireless ad hoc communication as a means of information dissemination we should count on frequent loss of connectivity in the network due to unpredictable mobility and sparse network topologies. In this paper we present the realization of an existing manycast protocol (random walk gossip) on commodity handheld devices running the Android platform. This communication mode is used to demonstrate the potential for distributed information dissemination on victims and finds. The application layer is an adaptation of an existing surveying information tool (POSIT) which is now fully decentralized and relies on text communication to achieve energy efficiency.
|
Bjørn Erik Munkvold, Jaziar Radianti, Jan Ketil Rød, Tomasz Opach, Mikael Snaprud, Sofie Pilemalm, et al. (2019). Sharing Incident and Threat Information for Common Situational Understanding. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: This paper presents the INSITU research project initiated to provide a systematic approach for effective sharing, integration and use of information from different sources, to establish a common operational picture (COP) and shared situational understanding among multiple actors in emergency response. The solution developed will provide an interactive map display, integrating harmonisation of terminology and collaboration support for information sharing and synthesis. The enhanced COP will also support evaluation and learning from exercises and incidents. The project involves close collaboration with emergency management stakeholders in Norway, for requirements analysis, participatory design, and validation of project deliverables. The research will improve information sharing and decision support in emergency operations centres, which will contribute to improve societal resilience through more effective response capability.
|
Kees Boersma, Jeroen Wolbers, & Pieter Wagenaar. (2010). Organizing emergent safety organizations: The travelling of the concept 'netcentric work' in the Dutch safety sector. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper is about the introduction of netcentric work in the public safety sector in the Netherlands. The idea behind netcentric work is that a common operational picture will help the professionals to overcome problems with sharing information during crisis. In this WIP paper we will pay attention to netcentric work principles and the dilemma of standardization of technologies versus local adaptation. In the Netherlands the government has chosen to introduce netcentric work via a Platform in which various options are discussed among members of Dutch safety regions. The outcome is a process of negotiation in what we call trading zones. In these trading zones netcentric work is (re)defined. Using theoretical concepts like soft-bureaucracy we show in this paper how netcentric work eventually is not about technology in the first place but a negotiated new way of working and organizing. Further research is needed to understand the full implications of netcentric work for the administration and organization of safety.
|
Art Botterell, & Martin Griss. (2012). A pragmatic approach to smart workspaces for crisis management. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: We explore the nature and benefits of smart spaces from the perspective of the emergency management user, propose a design vocabulary and reference architecture for constructing feasible, robust and flexible smart spaces for crisis management, and offer some examples of how smart-space approaches might support crisis management. © 2012 ISCRAM.
|
George H. Bressler, Murray E. Jennex, & Eric G. Frost. (2012). X24 Mexico: Stronger together. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Can populations self-organize a crisis response? This is a work in progress report on Exercise 24, X24, Mexico, a follow up to the first two exercises, X24 and X24 Europe The X24 exercises used a variety of free and low-cost social media and web 2.0 tools to organize, plan, and manage local and international expertise and organizations in the response to a preset disaster scenario. The first X24 focused on Southern California, while the second X24, X24 Europe, focused on the Balkan area of Eastern Europe. These exercises involved over 12,500 participants for X24 while X24 Europe had over 49,000 participants. This paper presents an overview of the recently completed X24 Mexico exercise, as well as the preliminary results. © 2012 ISCRAM.
|
Cecilia Hammar Wijkmark, & Ilona Heldal. (2020). Virtual and Live Simulation-Based Training for Incident Commanders. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 1154–1162). Blacksburg, VA (USA): Virginia Tech.
Abstract: Computer and virtual simulation-based training (CST) offer several benefits for emergency response and management preparedness. However, organizations responsible for training are often hesitant to use CST, based on cost and perceived lack of benefit when compared to live simulation training (LST). This paper investigates how CST can complement LST, and how it contributes to achieving the necessary learning objectives for level one fire and rescue service incident commanders (ICs). Data and examples come from an experimental study with students from different fire and rescue services trained in the role of the IC in LST and CST, in a similar scenario. Results show the cost and benefits of the CST implementation based on evaluations from learners, instructors and responsible managers. Participants had a positive attitude towards using virtual simulations, but the results also point to barriers regarding the suitable design of learning scenarios and implementation.
|
Albert Y. Chen, Feniosky Peña-Mora, Saumil J. Mehta, Stuart Foltz, Albert P. Plans, Brian R. Brauer, et al. (2010). A GIS approach to equipment allocation for structural stabilization and civilian rescue. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Efficient request and deployment of critical resources for urban search and rescue operations is vital to emergency response. This paper presents a RFID (Radio Frequency Identification) supported system for on-site data collection to communicate structural condition, to track search and rescue status, and to request and allocate appropriate resources. The system provides a unified interface for efficient posing, gathering, storing and sharing of building assessment information. Visualization and easy access of such information enables rescuers to response to the disaster with better situational awareness. Resource requests are sent to the GIS resource repository service that enables a visual disaster management environment for resource allocation. Request and deployment of critical resources through this system enables lifesaving efforts, with the appropriate equipment, operator, and materials, become more efficient and effective. System development at the Illinois Fire Service Institute has shown promising results.
|
Tina Comes, Michael Hiete, Niek Wijngaards, & Masja Kempen. (2009). Integrating scenario-based reasoning into multi-criteria decision analysis. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Multi-criteria decision analysis (MCDA) is a technique for decision support which aims at providing transparent and coherent support for complex decision situations taking into account subjective preferences of the decision makers. However, MCDA does not foresee an analysis of multiple plausible future developments of a given situation. In contrast, scenario-based reasoning (SBR) is frequently used to assess future developments on the longer term. The ability to discuss multiple plausible future developments provides a rationale for strategic plans and actions. Nevertheless, SBR lacks an in-depth performance evaluation of the considered actions. This paper explores the integration of both techniques that combines their respective strengths as well as their application in environmental crisis management. The proposed methodology is illustrated by an environmental incident example. Future work is to conduct validations on the basis of real-world scenarios by public Dutch and Danish chemical incident crisis management authorities.
|
Daniel Lichte, Dustin Witte, & Kai-Dietrich Wolf. (2020). Comprehensive Security Hazard Analysis for Transmission Systems. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 1145–1153). Blacksburg, VA (USA): Virginia Tech.
Abstract: Critical energy infrastructures are more and more focused upon by politics and society. Modern society depends on these structures, since they enable the steady support of electricity and other types of energy. Deliberately precipitated hazards of certain critical parts of electrical transmission systems (ETS) can lead to catastrophic consequences. Therefore, the analysis of feasible security hazards and resulting consequences for the operation of transmission systems are a concern to transmission system operators (TSO). Alas, there is no common method available that comprehensively identifies these feasible security related scenarios and classifies them according to their overall criticality for the safe operation of the ETS. To tackle this challenge, we propose a comprehensive, yet easy-to-apply method to systematically identify and assess the criticality of security threat scenarios. It is conducted in four steps and consists of a matrix based consistency check of threat scenarios in a defined solution space and a convenient semi-quantitative assessment of a risk factor for the ETS. The approach is illustrated by the simplified generic example of an EETS.
|
L.T. Darryl Diptee, & Jason Baker. (2013). Tackling wicked problems: Suicide in the US military. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 931–940). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Every 24 hours a member of the United States (US) Armed Forces commits suicide, while every hour a US veteran takes his own life. These statistics illuminate a deeply-rooted social crisis which eludes experts and military leaders to this day. Billions of dollars invested in suicide prevention seem to offer little relief for active duty servicemen and veterans alike. Military suicide is framed as a wicked problem and the new and exciting theory of Chronic Emotional Atrophy (CEA) is proposed to help explain causes of suicidal ideation in the military. A holistic crisis management strategy via information systems is presented in this work. Depressive symptoms exhibited by military members in emotionally suppressed environments closely parallel those phenomena exhibited by medical patients suffering from frontal lobe damage. The prospective psychiatric information system solution provides frontal lobe stimulation (FLS) to mitigate CEA and suicidal ideation.
|
David Paulus, Kenny Meesters, & Bartel Van de Walle. (2018). Turning data into action: supporting humanitarian field workers with open data. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 1030–1039). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: In the aftermath of disasters, information is of the essence for humanitarian decision makers in the field. Their concrete information needs is highly context-influenced and often they find themselves unable to access the right information at the right time. We propose a novel ICT-based approach to address these information needs more accurately. First, we select a group of in-field decision makers and collect their concrete information needs in the disaster aftermath. We then review to what extent existing data and tools can already address these needs. We conclude that existing solutions fall short in meeting important information needs of the selected group. We describe the design of an information system prototype to address these gaps more accurately. We combine data of the International Aid Transparency Initiative and the Humanitarian Data Exchange to form the data-backend of our system. We describe our implementation approach and evaluation plan.
|
Nicolas Di Tada, & Timothy Large. (2010). Emergency information system. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper describes an information system designed to be deployed in emergencies caused by sudden onset natural disasters. The aim is to streamline the communication flow and collaboration between media, aid workers and government agencies with the affected population, to help the latter get verified, accurate and actionable information that will enable them to make decisions and recover from the disaster. The Emergency Information Service (EIS) system also provides means for affected population and field workers to channel vital data back up into aid response. This tool is part of a free information service run by Thomson Reuters Foundation to help survivors of natural disasters. It will serve the affected populations, local media and relief responders by providing fast, practical and verified information in local languages through the best means available.
|
Dick Ooms, Willem-Jan van den Heuvel, & Bartel Van de Walle. (2018). A Conceptual Framework for Civil-Military Interaction in Peace Support Operations. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 1003–1015). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: In complex emergencies, civil and military organizations often find themselves being partners in an international effort aimed at peace keeping, humanitarian relief, and development support. Civil and military partners need to exchange information and to cooperate as required. This assumes effective and efficient Civil-Military Interaction (CMI). However, CMI research literature shows that, in practice, this is far from a reality. In particular, our research indicates that deficiencies in knowledge processes and knowledge management within international civil and military organizations contribute to the causes of ineffective and inefficient CMI. Our research aims to investigate the feasibility of developing technical solutions exploiting knowledge engineering, to support fieldworkers in overcoming these CMI problems. As a first step, this paper introduces a Conceptual Framework (CF) that captures reference models of the CMI domain. The CF has been developed to analyze CMI problems and underlying KM deficiencies. It is being illustrated, explored and validated using real-world case studies.
|
Wendy A. Edwards, Awais Vaid, & Ian S. Brooks. (2010). INDICATOR: An open-source cyberenvironment for biosurveillance. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In this paper, we discuss the architecture and implementation of INDICATOR, a free open source cyberenvironment for disease surveillance. Biosurveillance entails numerous tasks, including data acquisition and preparation, analysis, and reporting. These tasks can be modeled and executed as a workflow. Workflows encapsulate data, tools, and metadata. Cyberenvironments provide integrated, user-friendly sets of tools and services to marshal resources and help researchers analyze, visualize, and model their data. INDICATOR uses an Eclipse-based cyberenvironment that supports interactive workflow creation, connection to data and event streams, provenance tracking, and reuse of workflows and fragments to acquire, analyze, and visualize public health data.
|
Erion Elmasllari. (2018). Why IT systems for emergency response get rejected: examining responders' attitude to IT. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 994–1002). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Emergency responders' attitude to IT is marked by resistance, aversity, and rejection. This does not extend to technology in general and is specific to IT alone. Current research on the topic only presents partial, scattered, and unconnected accounts that do not provide a starting point on how to tackle this attitude. The available models for technology acceptance are also generic and do not take into account the specifics of the emergency response domain. Through extensive user research combined with a grounded theory approach, this paper identifies twelve problem areas from which responders' negative attitude towards IT arises. By extending the technology acceptance models with this new knowledge, we provide system designers with an understanding of what to tackle and tune in their IT system designs so that a positive attitude among emergency responders can be achieved.
|
Erion Elmasllari. (2019). Design and development methods for improving acceptance of IT among emergency responders. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Various sources report a low adoption of IT-based tools in emergency response, as well as a negative attitude of
responders to such tools. The responders’ needs, simply put, are not met by the IT-based tools offered to them.
Observing this situation through a user-centered design lens, we note that such problems typically stem from
insufficient or erroneous context analysis. The deficiencies become even more pronounced when considering that
emergency response represents a complex, adaptive socio-technical system. We also note that the appropriate
methodology for designing ER systems is rarely discussed in literature and in research papers. To fill that void, the
present paper discusses a minimal set of techniques that, both in our experience and according to state of the art
practice, can guide developers towards positively-accepted IT systems for emergency response.
|
Gary M. Fetter, Mauro Falasca, Christopher W. Zobel, & Terry R. Rakes. (2010). A multi-stage decision model for debris disposal operations. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: As shown by Hurricane Katrina, disposing of disaster-generated debris can be quite challenging. Extraordinary amounts of debris far exceeding typical annual amounts of solid waste are almost instantaneously deposited across a widespread area. Although the locations and amounts of debris can be easily summarized looking back after recovery activities have been completed, they are uncertain and difficult at best to estimate as debris operations begin to unfold. Further complicating matters is that the capacity of cleanup resources, which is dependent upon available equipment, labor, and subcontractors, can fluctuate during on-going cleanup operations. As a result, debris coordinators often modify initial resource assignments as more accurate debris estimates and more stable resource capacities become known. In this research, we develop a computer-based decision support system that incorporates a multi-stage programming model to assist decision makers with allocating debris cleanup resources immediately following a crisis event and during ongoing operations as debris volumes and resource capacities become known with increasing certainty.
|
Siska Fitrianie, & Leon J.M. Rothkrantz. (2009). Computed ontology-based situation awareness of multi-user observations. In S. J. J. Landgren (Ed.), ISCRAM 2009 – 6th International Conference on Information Systems for Crisis Response and Management: Boundary Spanning Initiatives and New Perspectives. Gothenburg: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: In recent years, we have developed a framework of human-computer interaction that offers recognition of various communication modalities including speech, lip movement, facial expression, handwriting/drawing, gesture, text and visual symbols. The framework allows the rapid construction of a multimodal, multi-device, and multi-user communication system within crisis management. This paper reports the approaches used in multi-user information integration (input fusion) and multimodal presentation (output fission) modules, which can be used in isolation, but also as part of the framework. The latter is able to specify and produce contextsensitive and user-tailored output combining language, speech, visual-language and graphics. These modules provide a communication channel between the system and users with different communication devices. By the employment of ontology, the system's view about the world is constructed from multi-user observations and appropriate multimodal responses are generated.
|
Flavio Horita, Ricardo Vilela, Renata Martins, Danielle Bressiani, Gilca Palma, & João Porto de Albuquerque. (2018). Determining flooded areas using crowd sensing data and weather radar precipitation: a case study in Brazil. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 1040–1050). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Crowd sensing data (also known as crowdsourcing) are of great significance to support flood risk management. With the growing volume of available data in the past few years, researchers have used in situ sensor data to filter and prioritize volunteers' information. Nevertheless, stationary, in situ sensors are only capable of monitoring a limited region, and this could hamper proper decision-making. This study investigates the use of weather radar precipitation to support the processing of crowd sensing data with the goal of improving situation awareness in a disaster and early warnings (e.g., floods). Results from a case study carried out in the city of São Paulo, Brazil, demonstrate that weather radar data are able to validate flooded areas identified from clusters of crowd sensing data. In this manner, crowd sensing and weather radar data together can not only help engage citizens, but also generate high-quality data at finer spatial and temporal resolutions to improve the decision-making related to weather-related disaster events.
|
Stephen C. Fortier. (2013). Developing an incident response process model for chemical facilities. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 941–950). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This research project investigated the incident response mechanism used by the chemical industry for handling extremely hazardous chemicals. The mechanism was described as the policies, procedures, practices, tools, and methods used to conduct incident response. The results from the study determined what technologies, specifically software and information systems, could be utilized to improve the chemical facility incident response mechanism. The chemical industry is responsible for process safety management at all of its facilities, especially those that have off-site consequences in the event of an unplanned release. The processes and procedures of local, regional and national emergency responders have been studied thoroughly. An area of research that is lacking is the study of incident response policies and procedures within the boundaries of a chemical site. Results of the analysis determined that the chemical industry, in general, does not take advantage of available information technology when responding to unplanned releases.
|