Hemant Purohit, & Jennifer Chan. (2017). Classifying User Types on Social Media to inform Who-What-Where Coordination during Crisis Response. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 656–665). Albi, France: Iscram.
toggle visibility
Shane Errol Halse, Aurélie Montarnal, Andrea Tapia, & Frederick Benaben. (2018). Bad Weather Coming: Linking social media and weather sensor data. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 507–515). Rochester, NY (USA): Rochester Institute of Technology.
toggle visibility
Venkata Kishore Neppalli, Cornelia Caragea, & Doina Caragea. (2018). Deep Neural Networks versus Naive Bayes Classifiers for Identifying Informative Tweets during Disasters. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 677–686). Rochester, NY (USA): Rochester Institute of Technology.
toggle visibility
Kiran Zahra, Muhammad Imran, & Frank O Ostermann. (2018). Understanding eyewitness reports on Twitter during disasters. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 687–695). Rochester, NY (USA): Rochester Institute of Technology.
toggle visibility
Reza Mazloom, HongMin Li, Doina Caragea, Muhammad Imran, & Cornelia Caragea. (2018). Classification of Twitter Disaster Data Using a Hybrid Feature-Instance Adaptation Approach. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 727–735). Rochester, NY (USA): Rochester Institute of Technology.
toggle visibility