Anna Kruspe. (2020). Detecting Novelty in Social Media Messages During Emerging Crisis Events. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 860–871). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media can be a highly valuable source of information during disasters. A crisis' development over time is of particular interest here, as social media messages can convey unfolding events in near-real time. Previous approaches for the automatic detection of information in such messages have focused on a static analysis, not taking temporal changes and already-known information into account. In this paper, we present a novel method for detecting new topics in incoming Twitter messages (tweets) conditional upon previously found related tweets. We do this by first extracting latent representations of each tweet using pre-trained sentence embedding models. Then, Infinite Mixture modeling is used to dynamically cluster these embeddings anew with each incoming tweet. Once a cluster reaches a minimum number of members, it is considered to be a new topic. We validate our approach on the TREC Incident Streams 2019A data set.
|
Ferda Ofli, Firoj Alam, & Muhammad Imran. (2020). Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 802–811). Blacksburg, VA (USA): Virginia Tech.
Abstract: Multimedia content in social media platforms provides significant information during disaster events. The types of information shared include reports of injured or deceased people, infrastructure damage, and missing or found people, among others. Although many studies have shown the usefulness of both text and image content for disaster response purposes, the research has been mostly focused on analyzing only the text modality in the past. In this paper, we propose to use both text and image modalities of social media data to learn a joint representation using state-of-the-art deep learning techniques. Specifically, we utilize convolutional neural networks to define a multimodal deep learning architecture with a modality-agnostic shared representation. Extensive experiments on real-world disaster datasets show that the proposed multimodal architecture yields better performance than models trained using a single modality (e.g., either text or image).
|
Haiyan Hao, & Yan Wang. (2020). Hurricane Damage Assessment with Multi-, Crowd-Sourced Image Data: A Case Study of Hurricane Irma in the City of Miami. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 825–837). Blacksburg, VA (USA): Virginia Tech.
Abstract: The massive crowdsourced data generated on social networking platforms (e.g. Twitter and Flickr) provide free, real-time data for damage assessment (DA) even during catastrophes. Recent studies leveraging crowdsourced data for DA mainly focused on analyzing textual formats. Crowdsourced images can provide rich and objective information about damage conditions, however, are rarely researched for DA purposes. The highly-varied content and loosely-defined damage forms make it difficult to process and analyze the crowdsourced images. To address this problem, we propose a data-driven DA method based on multi-, crowd-sourced images, which includes five machine learning classifiers organized in a hierarchical structure. The method is validated with a case study investigating the damage condition of the City of Miami caused by Hurricane Irma. The outcome is then compared with a metric derived from NFIP insurance claims data. The proposed method offers a resource for rapid DA that supplements conventional DA methods.
|
Hannah Van Wyk, & Kate Starbird. (2020). Analyzing Social Media Data to Understand How Disaster-Affected Individuals Adapt to Disaster-Related Telecommunications Disruptions. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 704–717). Blacksburg, VA (USA): Virginia Tech.
Abstract: Information is a critical need during disasters such as hurricanes. Increasingly, people are relying upon cellular and internet-based technology to communicate that information--modalities that are acutely vulnerable to the disruptions to telecommunication infrastructure that are common during disasters. Focusing on Hurricane Maria (2017) and its long-term impacts on Puerto Rico, this research examines how people affected by severe and sustained disruptions to telecommunications services adapt to those disruptions. Leveraging social media trace data as a window into the real-time activities of people who were actively adapting, we use a primarily qualitative approach to identify and characterize how people changed their telecommunications practices and routines--and especially how they changed their locations--to access Wi-Fi and cellular service in the weeks and months after the hurricane. These findings have implications for researchers seeking to better understand human responses to disasters and responders seeking to identify strategies to support affected populations.
|
James A. Reep, & Andrea Tapia. (2020). Toward an Organizational Technology Adoption Process (OTAP) for Social Media Integration in a PSAP. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 718–729). Blacksburg, VA (USA): Virginia Tech.
Abstract: Integration of social media in emergency response environments presents specific organizational challenges, such as lack of resources or information credibility. Additionally, there exists individual resistance to change in these environments that could potentially discourage adoption. To identify and understand these challenges, we conducted semi-structured group interviews with emergency call takers and dispatchers. We find that these PSAP operators desire participation and explanation of changes throughout the organizational change process. Participants also articulated they desired training regarding change even when not directly affected. Though change management procedures often call for these strategies, they are commonly overlooked, leaving individuals to imagine worse case scenarios that manifest as additional stress in an already stressful work environment. It is suggested that a formalized change management process which directly addresses the identified challenges within the organizational technology adoption process (OTAP) is needed in order to mitigate undue stress.
|
Jeremy Diaz, Lise St. Denis, Maxwell B. Joseph, Kylen Solvik, & Jennifer K. Balch. (2020). Classifying Twitter Users for Disaster Response: A Highly Multimodal or Simple Approach? In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 774–789). Blacksburg, VA (USA): Virginia Tech.
Abstract: We report on the development of a classifier to identify Twitter users contributing first-hand information during a disaster. Identifying such users helps social media monitoring teams identify critical information that might otherwise slip through the cracks. A parallel study (St. Denis et al., 2020) demonstrates that Twitter user filtering creates an information-rich stream of content, but the best way to approach this task is unexplored. A user's profile contains many different “modalities” of data, including numbers, text, and images. To integrate these different data types, we constructed a multimodal neural network that combines the loss function of all modalities, and we compared the results to many individual unimodal models and a decision-level fusion approach. Analysis of the results suggests that unimodal models acting on Twitter users' recent tweets are sufficient for accurate classification. We demonstrate promising classification of Twitter users for crisis response with methods that are (1) easy to implement and (2) quick to both optimize and infer.
|
Justin Michael Crow. (2020). Verifying Baselines for Crisis Event Information Classification on Twitter. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 670–687). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media are rich information sources during crisis events such as earthquakes and terrorist attacks. Despite myriad challenges, with the right tools, significant insight can be gained to assist emergency responders and related applications. However, most extant approaches are incomparable, using bespoke definitions, models, datasets and even evaluation metrics. Furthermore, it's rare that code, trained models, or exhaustive parametrisation details are openly available. Thus, even confirming self-reported performance is problematic; authoritatively determining state of the art (SOTA) is essentially impossible. Consequently, to begin addressing such endemic ambiguity, this paper makes 3 contributions: 1) replication and results confirmation of a leading technique; 2) testing straightforward modifications likely to improve performance; and 3) extension to a novel complimentary type of crisis-relevant information to demonstrate it's generalisability.
|
Kamol Roy, MD Ashraf Ahmed, Samiul Hasan, & Arif Mohaimin Sadri, P. D. (2020). Dynamics of Crisis Communications in Social Media: Spatio-temporal and Text-based Comparative Analyses of Twitter Data from Hurricanes Irma and Michael. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 812–824). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media platforms play critical roles in information dissemination, communication and co-ordination during different phases of natural disasters as it is crucial to know the type of crisis information being disseminated and user concerns. Large-scale Twitter data from hurricanes Irma (Sept. 2017) and Michael (Oct. 2018) are used here to understand the topic dynamics over time by applying the Dynamic Topic Model, followed by a comparative analyses of the differences in such dynamics for these two hurricane scenarios. We performed a spatio-temporal analyses of user activities with reference to the hurricane center location and wind speed. The findings of spatio-temporal analyses show that differences in hurricane path and the affected regions influence user participation and social media activity. Besides, topic dynamics reveals that situational awareness, disruptions, relief action are among the patterns common for both hurricanes; unlike topics such as hurricane evacuation and political situation that are scenario dependent.
|
Lise Ann St. Denis, Amanda Lee Hughes, Jeremy Diaz, Kylen Solvik, Maxwell B. Joseph, & Jennifer K. Balch. (2020). 'What I Need to Know is What I Don't Know!': Filtering Disaster Twitter Data for Information from Local Individuals. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 730–743). Blacksburg, VA (USA): Virginia Tech.
Abstract: We report on the design, development, and evaluation of a user labeling framework for social media monitoring by emergency responders. By labeling Twitter user accounts based on behavior and content, this novel approach identifies tweets from accounts belonging to Individuals generating Personalized content and captures information that might otherwise be missed. We evaluate the framework using training data from the 2018 Camp, Woolsey, and Hill fires. Approximately 30% of the Individual-Personalized tweets contain first-hand information, providing a rich stream of content for social media monitoring. Because it can quickly eliminate most redundant tweets, this framework could be a critical first step in an end-to-end information extraction pipeline. It may also generalize more easily for new disaster events since it relies on general user account attributes rather than tweet content. We conclude with next steps for refining and evaluating our framework in near real-time during a disaster response.
|
Liuqing Li, & Edward A. Fox. (2020). Disaster Response Patterns across Different User Groups on Twitter: A Case Study during Hurricane Dorian. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 838–848). Blacksburg, VA (USA): Virginia Tech.
Abstract: We conducted a case study analysis of disaster response patterns across different user groups during Hurricane Dorian in 2019. We built a tweet collection about the hurricane, covering a two week period. We divided Twitter users into two groups: brand/organization or individual. We found a significant difference in response patterns between the groups. Brand users increasingly participated as the disaster unfolded, and they posted more tweets than individual users on average. Regarding emotions, brand users posted more tweets with joy and surprise, while individual users posted more tweets with sadness. Fear was a common emotion between the two groups. Further, both groups used different types of hashtags and words in their tweets. Some distinct patterns were also discovered in their concerns on specific topics. These results suggest the value of further exploration with more tweet collections, considering the behavior of different user groups during disasters.
|
Matti Wiegmann, Jens Kersten, Friederike Klan, Martin Potthast, & Benno Stein. (2020). Analysis of Detection Models for Disaster-Related Tweets. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 872–880). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media is perceived as a rich resource for disaster management and relief efforts, but the high class imbalance between disaster-related and non-disaster-related messages challenges a reliable detection. We analyze and compare the effectiveness of three state-of-the-art machine learning models for detecting disaster-related tweets. In this regard we introduce the Disaster Tweet Corpus~2020, an extended compilation of existing resources, which comprises a total of 123,166 tweets from 46~disasters covering 9~disaster types. Our findings from a large experiments series include: detection models work equally well over a broad range of disaster types when being trained for the respective type, a domain transfer across disaster types leads to unacceptable performance drops, or, similarly, type-agnostic classification models behave more robust at a lower effectiveness level. Altogether, the average misclassification rate of~3,8\% on performance-optimized detection models indicates effective classification knowledge but comes at the price of insufficient generalizability.
|
Muhammad Imran, Firoj Alam, Umair Qazi, Steve Peterson, & Ferda Ofli. (2020). Rapid Damage Assessment Using Social Media Images by Combining Human and Machine Intelligence. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 761–773). Blacksburg, VA (USA): Virginia Tech.
Abstract: Rapid damage assessment is one of the core tasks that response organizations perform at the onset of a disaster to understand the scale of damage to infrastructures such as roads, bridges, and buildings. This work analyzes the usefulness of social media imagery content to perform rapid damage assessment during a real-world disaster. An automatic image processing system, which was activated in collaboration with a volunteer response organization, processed ~280K images to understand the extent of damage caused by the disaster. The system achieved an accuracy of 76% computed based on the feedback received from the domain experts who analyzed ~29K system-processed images during the disaster. An extensive error analysis reveals several insights and challenges faced by the system, which are vital for the research community to advance this line of research.
|
Nasik Muhammad Nafi, Avishek Bose, Sarthak Khanal, Doina Caragea, & William H. Hsu. (2020). Abstractive Text Summarization of Disaster-Related Documents. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 881–892). Blacksburg, VA (USA): Virginia Tech.
Abstract: Abstractive summarization is intended to capture key information from the full text of documents. In the application domain of disaster and crisis event reporting, key information includes disaster effects, cause, and severity. While some researches regarding information extraction in the disaster domain have focused on keyphrase extraction from short disaster-related texts like tweets, there is hardly any work that attempts abstractive summarization of long disaster-related documents. Following the recent success of Reinforcement Learning (RL) in other domains, we leverage an RL-based state-of-the-art approach in abstractive summarization to summarize disaster-related documents. RL enables an agent to find an optimal policy by maximizing some reward. We design a novel hybrid reward metric for the disaster domain by combining \underline{Vec}tor Similarity and \underline{Lex}icon Matching (\textit{VecLex}) to maximize the relevance of the abstract to the source document while focusing on disaster-related keywords. We evaluate the model on a disaster-related subset of a CNN/Daily Mail dataset consisting of 104,913 documents. The results show that our approach produces more informative summaries and achieves higher \textit{VecLex} scores compared to the baseline.
|
Richard McCreadie, Cody Buntain, & Ian Soboroff. (2020). Incident Streams 2019: Actionable Insights and How to Find Them. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 744–760). Blacksburg, VA (USA): Virginia Tech.
Abstract: The ubiquity of mobile internet-enabled devices combined with wide-spread social media use during emergencies is posing new challenges for response personnel. In particular, service operators are now expected to monitor these online channels to extract actionable insights and answer questions from the public. A lack of adequate tools makes this monitoring impractical at the scale of many emergencies. The TREC Incident Streams (TREC-IS) track drives research into solving this technology gap by bringing together academia and industry to develop techniques for extracting actionable insights from social media streams during emergencies. This paper covers the second year of TREC-IS, hosted in 2019 with two editions, 2019-A and 2019-B, contributing 12 new events and approximately 20,000 new tweets across 25 information categories, with 15 research groups participating across the world. This paper provides an overview of these new editions, actionable insights from data labelling, and the automated techniques employed by participant systems that appear most effective.
|
Rob Grace. (2020). Hyperlocal Toponym Usage in Storm-Related Social Media. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 849–859). Blacksburg, VA (USA): Virginia Tech.
Abstract: Crisis responders need to locate events reported in social media messages that typically lack geographic metadata such as geotags. Toponyms, places names referenced in messages, provide another source of geographic information, however, the availability and granularity of toponyms in crisis social media remain poorly understood. This study examines toponym usage and granularity across six categories of crisis-related information posted on Twitter during a severe storm. Findings show users often include geographic information in messages describing local and remote storm events but do so rarely when discussing other topics, more often use toponyms than geotags when describing local events, and tend to include fine-grained toponyms in reports of infrastructure damage and service disruption and course-grained toponyms in other kinds of storm-related messages. These findings present requirements for hyperlocal geoparsing techniques and suggest that social media monitoring presents more immediate affordances for course-grained damage assessment than fine-grained situational awareness during a crisis.
|
Sandrine Bubendorff, & Caroline Rizza. (2020). The Wikipedia Contribution to Social Resilience During Terrorist Attacks. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 790–801). Blacksburg, VA (USA): Virginia Tech.
Abstract: This paper aims at studying the role of Wikipedia in social resilience processes during terrorist attacks. It discusses how Wikipedia users' specific skills are mobilized in order to make sense of the event as it unfolds. We have conducted an ethnographic analysis of several Wikipedia's terrorist attacks pages as well as interviews with regular Wikipedia's contributors. We document how Wikipedia is used during crisis by readers and contributors. Doing so, we identify a specific pace of contributions which provides reliable information to readers. By discussing the conditions of their trustworthiness, we highlight how historical sources (i.e. traditional media and authorities) support this pace. Our analyses demonstrate that citizens are engaging very quickly in processes of resilience and should be, therefore, considered as relevant partners by authorities when engaging a response to the crisis.
|
Valerio Lorini, Javier Rando, Diego Saez-Trumper, & Carlos Castillo. (2020). Uneven Coverage of Natural Disasters in Wikipedia: The Case of Floods. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 688–703). Blacksburg, VA (USA): Virginia Tech.
Abstract: The usage of non-authoritative data for disaster management provides timely information that might not be available through other means. Wikipedia, a collaboratively-produced encyclopedia, includes in-depth information about many natural disasters, and its editors are particularly good at adding information in real-time as a crisis unfolds. In this study, we focus on the most comprehensive version of Wikipedia, the English one. Wikipedia offers good coverage of disasters, particularly those having a large number of fatalities. However, by performing automatic content analysis at a global scale, we also show how the coverage of floods in Wikipedia is skewed towards rich, English-speaking countries, in particular the US and Canada. We also note how coverage of floods in countries with the lowest income is substantially lower than the coverage of floods in middle-income countries. These results have implications for analysts and systems using Wikipedia as an information source about disasters.
|
Xukun Li, & Doina Caragea. (2020). Improving Disaster-related Tweet Classification with a Multimodal Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 893–902). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media data analysis is important for disaster management. Lots of prior studies have focused on classifying a tweet based on its text or based on its images, independently, even if the tweet contains both text and images. Under the assumptions that text and images may contain complementary information, it is of interest to construct classifiers that make use of both modalities of the tweet. Towards this goal, we propose a multimodal classification model which aggregates text and image information. Our study aims to provide insights into the benefits obtained by combining text and images, and to understand what type of modality is more informative with respect to disaster tweet classification. Experimental results show that both text and image classification can be improved by the multimodal approach.
|