Ly Dinh, Sumeet Kulkarni, Pingjing Yang, & Jana Diesner. (2023). Reliability of Methods for Extracting Collaboration Networks from Crisis-related Situational Reports and Tweets. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 181–195). Palmerston North, New Zealand: Massey Unversity.
Abstract: Assessing the effectiveness of crisis response is key to improving preparedness and adapting policies. One method for response evaluation is reviewing actual response activities and interactions. Response reports are often available in the form of natural language text data. Analyzing a large number of such reports requires automated or semi automated solutions. To improve the trustworthiness of methods for this purpose, we empirically validate the reliability of three relation extraction methods that we used to construct interorganizational collaboration networks by comparing them against human-annotated ground truth (crisis-specific situational reports and tweets). For entity extraction, we find that using a combination of two off-the-shelf methods (FlairNLP and SpaCy) is optimal for situational reports data and one method (SpaCy) for tweets data. For relation extraction, we find that a heuristics-based model that we built by leveraging word co-occurrence and deep and shallow syntax as features and training it on domain-specific text data outperforms two state-of-the-art relation extraction models (Stanford OpenIE and OneIE) that were pre-trained on general domain data. We also find that situational reports, on average, contain less entities and relations than tweets, but the extracted networks are more closely related to collaboration activities mentioned in the ground truth. As it is widely known that general domain tools might need adjustment to perform accurately in specific domains, we did not expect the tested off-the-shelf tools to perform highly accurately. Our point is to rather identify what accuracy one could reasonably expect when leveraging available resources as-is for domain specific work (in this case, crisis informatics), what errors (in terms of false positives and false negatives) to expect, and how to account for that.
|
|
Robert Power, Bella Robinson, & Mark Cameron. (2023). Insights from a Decade of Twitter Monitoring for Emergency Management. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 247–257). Palmerston North, New Zealand: Massey Unversity.
Abstract: The Emergency Situation Awareness (ESA) tool began as a research study into automated web text mining to support emergency management use cases. It started in late 2009 by investigating how people respond on Twitter to specific emergency events and we quickly realized that every emergency situation is different and preemptively defining keywords to search for content on Twitter beforehand would likely miss important information. So, in late September 2011 we established location-based searches with the aim of collecting all the tweets published in Australia and New Zealand. This was the beginning of over a decade of collecting and processing tweets to help emergency response agencies and crisis coordination centres use social media content as a new channel of information to support their work practices and to engage with the community impacted by emergency events. This journey has seen numerous challenges overcome to continuously maintain a tweet stream for an operational system. This experience allows us to derive insights into the changing use of Twitter over this time. In this paper we present some of the lessons we’ve learned from maintaining a Twitter monitoring system for emergency management use cases and we provide some insights into the changing nature of Twitter usage by users over this period.
|
|
Guillermo Romera Rodriguez. (2023). Parler, Capitol Riots, Alt-Right and Radicalization in Social Media. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 268–277). Palmerston North, New Zealand: Massey Unversity.
Abstract: Social media platforms have risen in popularity since their inception. These platforms have since then come to be at the forefront of controversies, from being accused of election interference to, more recently, disseminating fake news and campaigns to sway political behavior. One such episode took place on January 6 when a group of individuals stormed the United States Capitol, and the social media platform Parler came under scrutiny. The platform was accused of being a place for right-wing extremists and Trump supporters who claimed the 2020 election was fraudulent. Initial reports suggested these individuals used Parler to organize and call others to action. This paper explores the feasibility of using social media to detect alt-right radicalization and examines its possible relation to the Capitol Insurrection and Parler. Moreover, we examine if those events could have been detected and averted through the investigation of the platform.
|
|
Dilini Rajapaksha, Kacper Sokol, Jeffrey Chan, Flora Salim, Mukesh Prasad, & Mahendra Samarawickrama. (2023). Analysing Donors’ Behaviour in Non-profit Organisations for Disaster Resilience. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 258–267). Palmerston North, New Zealand: Massey Unversity.
Abstract: With the advancement and proliferation of technology, non-profit organisations have embraced social media platforms to improve their operational capabilities through brand advocacy, among many other strategies. The effect of such social media campaigns on these institutions, however, remains largely underexplored, especially during disaster periods. This work introduces and applies a quantitative investigative framework to understand how social media influence the behaviour of donors and their usage of these platforms throughout (natural) disasters. More specifically, we explore how on-line engagement – as captured by Facebook interactions and Google search trends – corresponds to the donors’ behaviour during the catastrophic 2019–2020 Australian bushfire season. To discover this relationship, we analyse the record of donations made to the Australian Red Cross throughout this period. Our exploratory study reveals that social media campaigns are effective in encouraging on-line donations made via a dedicated website. We also compare this mode of giving to more regular, direct deposit gifting.
|
|
Xiao Li, Julia Kotlarsky, & Michael D. Myers. (2023). Crowdsourcing and the COVID-19 Response in China: An Actor-Network Perspective. In V. L. Thomas J. Huggins (Ed.), Proceedings of the ISCRAM Asia Pacific Conference 2022 (pp. 240–246). Palmerston North, New Zealand: Massey Unversity.
Abstract: Crowdsourcing, serving as a distributed problem-solving and production model, can help in the response to a disaster. The current literature focuses on the flow of crowdsourced information, but the question of how crowdsourcing contributes to physical disaster workflows remains to be addressed. Based on a case study of China’s response to COVID-19, this research aims to explore the role of crowdsourcing stakeholders and how they acted to respond to the outbreak. Actor network theory is applied as the lens to elucidate the roles of different heterogeneous actors. The preliminary results indicate that socio-technical actors activated, absorbed, associated, and aligned with each other to combat the pandemic. We suggest ways to augment the actor network to address potential future outbreaks.
|
|