Tobias Andersson Granberg, Carl-Oscar Jonson, Erik Prytz, Krisjanis Steins, & Martin Waldemarsson. (2020). Sensor Requirements for Logistics Analysis of Emergency Incident Sites. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 952–960). Blacksburg, VA (USA): Virginia Tech.
Abstract: Using sensors to collect data at emergency incident sites can facilitate analysis of the logistic operations. This can be used to improve planning and preparedness for new operations. Furthermore, real-time information from the sensors can serve as operational decision support. In this work in progress, we investigate the requirements on the sensors, and on the sensor data, to facilitate such an analysis. Through observations of exercises, the potential of using sensors for data collection is explored, and the requirements are considered. The results show that the potential benefits are significant, especially for tracking patients, and understanding the interaction between the response actors. However, the sensors need to be quite advanced in order to capture the necessary data.
|
|
Spyros Chrysanthopoulos, Theofanis Kapetanakis, Giannis Chaidemenos, Stelios Vernardos, Harris Georgiou, & Claudio Rossi. (2020). Emergency Response in Recent Urban/Suburban Disaster Events in Attica: Technology Gaps, Limitations and Lessons Learned. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 984–989). Blacksburg, VA (USA): Virginia Tech.
Abstract: Emergency response operations in large-scale urban/suburban disaster events is often addressed by the standard protocols and international guidelines for collapsed buildings, heavy debris, etc. However, a wide range of First Responder (FR) operations need to address various other contexts, work environments and hazards. In this paper, two real disaster events are explored as use cases for such urban/suburban FR operations, namely a flash flood and a wildfire, both in Attica, Greece (2017-2018). Based on our team's experience from these mobilizations and active participation in both these events as FR actor in the field, we present the challenges, the complexity of such multi-aspect disaster events, the limitations of emergency response, the technology gaps of the FR teams, as well as the lessons learned during these deployments. Finally, we make some notes on future prospects and possible advancements in tools and technologies that would greatly enhance the operational safety and readiness of the FR teams in such events.
|
|
Ryan K. Williams, Nicole Abaid, James McClure, Nathan Lau, Larkin Heintzman, Amanda Hashimoto, et al. (2020). Collaborative Multi-Robot Multi-Human Teams in Search and Rescue. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 973–983). Blacksburg, VA (USA): Virginia Tech.
Abstract: Robots such as unmanned aerial vehicles (UAVs) deployed for search and rescue (SAR) can explore areas where human searchers cannot easily go and gather information on scales that can transform SAR strategy. Multi-UAV teams therefore have the potential to transform SAR by augmenting the capabilities of human teams and providing information that would otherwise be inaccessible. Our research aims to develop new theory and technologies for field deploying autonomous UAVs and managing multi-UAV teams working in concert with multi-human teams for SAR. Specifically, in this paper we summarize our work in progress towards these goals, including: (1) a multi-UAV search path planner that adapts to human behavior; (2) an in-field distributed computing prototype that supports multi-UAV computation and communication; (3) behavioral modeling that yields spatially localized predictions of lost person location; and (4) an interface between human searchers and UAVs that facilitates human-UAV interaction over a wide range of autonomy.
|
|
Michael Holzhüter, & Ulrich Meissen. (2020). A Decentralized Reference Architecture for Interconnected Systems in Emergency Management. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 961–972). Blacksburg, VA (USA): Virginia Tech.
Abstract: Optimal communication and information exchange are key elements for handling complex crises or disaster situations. With the increasing number of heterogeneous ICT systems, also raises the importance of adequate support for interconnectivity and information logistics between stakeholders to thoroughly gather information and to make quick but precise decisions. The main purpose of the information exchange is then to manage the crisis as quickly as possible, to provide full information to protect first responders' health and safety, to optimally dispatch resources, and to ensure coordination between different relief forces. Based on an end user survey with a particular focus on first responders, this paper introduces an evolutionary architecture to enable information exchange in crises situation or disasters. The aim is to provide a decentralized approach among heterogeneous ICT-systems which abstracts from the underlying communication technologies and heterogeneity of connected systems and fulfills the functional and non-functional requirements from end users.
|
|
Konstantinos Konstantoudakis, Georgios Albanis, Emmanouil Christakis, Nikolaos Zioulis, Anastasios Dimou, Dimitrios Zarpalas, et al. (2020). Single-Handed Gesture UAV Control for First Responders – A Usability and Performance User Study. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 937–951). Blacksburg, VA (USA): Virginia Tech.
Abstract: Unmanned aerial vehicles (UAVs) have increased in popularity in recent years and are now involved in many activities, professional and otherwise. First responders, those teams and individuals who are the first to respond in crisis situations, have been using UAVs to assist them in locating victims and identifying hazards without endangering human personnel needlessly. However, professional UAV controllers tend to be heavy and cumbersome, requiring both hands to operate. First responders, on the other hand, often need to carry other important equipment and need to keep their hands free during a mission. This work considers enabling first responders to control UAVs with single-handed gestures, freeing their other hand and reducing their encumbrance. Two sets of gesture UAV controls are presented and implemented in a simulated environment, and a two-part user study is conducted: the first part assesses the comfort of each gesture and their intuitive association with basic flight control concepts; and the second evaluates two different modes of gesture control in a population of users including both genders, and first responders as well as members of the general populace. The results, consisting of both objective and subjective measurements, are discussed, hindrances and problems are identified, and directions of future work and research are mapped out.
|
|