Anouck Adrot, Samuel Auclair, Julien Coche, Audrey Fertier, Cécile Gracianne, & Aurélie Montarnal. (2022). Using Social Media Data in Emergency Management: A Proposal for a Socio-technical Framework and a Systematic Literature Review. In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 470–479). Tarbes, France.
Abstract: Data represents an essential resource to the management of emergencies: organizations have been growingly investing in technologies and resources to lever data as an asset before, during, and after disasters and emergencies. However, research on data usage in emergency management remains fragmented, preventing practitioners and scholars from approaching data comprehensively. To address this gap, this research in progress consists of a systematic review of the literature in a two-steps approach: we first propose a socio-technical framework and use it in an exploratory mapping of the main topics covered by the literature. Our preliminary findings suggest that research on data usage primarily focuses on technological opportunities and affordances and, hence, lacks practical implementation aspects in organizations. The expected contribution is double. First, we contribute to a more comprehensive understanding of data usage in emergency management. Second, we propose future avenues for research on data and resilience.
|
Jess Kropczynski, Rob Grace, Julien Coche, Shane Halse, Eric Obeysekare, Aurélie Montarnal, et al. (2018). Identifying Actionable Information on Social Media for Emergency Dispatch. In Kristin Stock, & Deborah Bunker (Eds.), Proceedings of ISCRAM Asia Pacific 2018: Innovating for Resilience – 1st International Conference on Information Systems for Crisis Response and Management Asia Pacific. (pp. 428–438). Albany, Auckland, New Zealand: Massey Univeristy.
Abstract: Crisis informatics researchers have taken great interest in methods to identify information relevant to crisis events posted by digital bystanders on social media. This work codifies the information needs of emergency dispatchers and first responders as a method to identify actionable information on social media. Through a design workshop with public safety professionals at a Public-Safety Answering Point (PSAP) in the United States, we develop a set of information requirements that must be satisfied to dispatch first responders and meet their immediate situational awareness needs. We then present a manual coding scheme to identify information satisfying these requirements in social media posts and apply this scheme to fictitious tweets professionals propose as actionable information to better assess ways that this information may be communicated. Finally, we propose automated methods from previous literature in the field that can be used to implement these methods in the future.
|
Julien Coche, Aurelie Montarnal, Andrea Tapia, & Frederick Benaben. (2020). Automatic Information Retrieval from Tweets: A Semantic Clustering Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 134–141). Blacksburg, VA (USA): Virginia Tech.
Abstract: Much has been said about the value of social media messages for emergency services. The new uses related to these platforms bring users to share information, otherwise unknown in crisis events. Thus, many studies have been performed in order to identify tweets relating to a crisis event or to classify these tweets according to certain categories. However, determining the relevant information contained in the messages collected remains the responsibility of the emergency services. In this article, we introduce the issue of classifying the information contained in the messages. To do so, we use classes such as those used by the operators in the call centers. Particularly we show that this problem is related to named entities recognition on tweets. We then explain that a semi-supervised approach might be beneficial, as the volume of data to perform this task is low. In a second part, we present some of the challenges raised by this problematic and different ways to answer it. Finally, we explore one of them and its possible outcomes.
|
Julien Coche, Jess Kropczynski, Aurélie Montarnal, Andrea Tapia, & Frédérick Bénaben. (2021). Actionability in a Situation Awareness world: Implications for social media processing system design. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 994–1001). Blacksburg, VA (USA): Virginia Tech.
Abstract: The field of crisis informatics now has a decade-long history of designing tools that leverage social media to support decision-makers situation awareness. Despite this history, there remains few examples of these tools adopted by practitioners. Recent fieldwork with public safety answering points and first responders has led to an awareness of the need for tools that gather actionable information, rather than situational awareness alone. This paper contributes to an ongoing discussion about these concepts by proposing a model that embeds the concept of actionable information into Endsley's model of situation awareness. We also extend the insights of this model to the design implications of future information processing systems.
|