|
Christoph Aubrecht, Klaus Steinnocher, & Hermann Huber. (2014). DynaPop – Population distribution dynamics as basis for social impact evaluation in crisis management. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 314–318). University Park, PA: The Pennsylvania State University.
Abstract: In this paper ongoing developments regarding the conceptual setup and subsequent implementation logic of a seamless spatio-temporal population dynamics model are presented. The DynaPop model aims at serving as basic input for social impact evaluation in crisis management. In addition to providing the starting point for assessing population exposure dynamics, i.e. the location and number of affected people at different stages during an event, knowledge of spatio-temporal population distribution patterns is also considered crucial for a set of other related aspects in disaster risk and crisis management including evacuation planning and casualty assessment. DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation.
|
|
|
Christoph Aubrecht, Sérgio Freire, Josef Fröhlich, Beatrice Rath, & Klaus Steinnocher. (2011). Integrating the concepts of foresight and prediction for improved disaster risk management. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This discussion paper focuses on conceptualizing the ultimate goal in disaster management, i.e. reduction of future risks and impacts and explicitly highlights how actions taken in various phases of integrated disaster risk management influence vulnerability and eventually overall risk characteristics. First, the advancement of the disaster management concept evolving from a cyclic perspective to a spiral view is described and the various stages of disaster management including risk analysis, mitigation, and response are explained. In an attempt to improve and advance disaster risk management, next, the concepts of foresight and prediction are described and its major differences are highlighted. Finally, the basic framework of risk governance is considered for integrating foresight and prediction and thus lifting disaster management to the next level. Active and transparent communication and participation is seen as the key for successfully implementing risk governance.
|
|
|
Stefan Schauer, Stefan Rass, Sandra König, Klaus Steinnocher, Thomas Schaberreiter, & Gerald Quirchmayr. (2020). Cross-Domain Risk Analysis to Strengthen City Resilience: the ODYSSEUS Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 652–662). Blacksburg, VA (USA): Virginia Tech.
Abstract: In this article, we want to present the concept for a risk management approach to assess the condition of critical infrastructure networks within metropolitan areas, their interdependencies among each other and the potential cascading effects. In contrast to existing solutions, this concept aims at providing a holistic view on the variety of interconnected networks within a city and the complex dependencies among them. Therefore, stochastic models and simulations are integrated into risk management to improve the assessment of cascading effects and support decision makers in crisis situations. This holistic view will allow risk managers at the city administration as well as emergency organizations to understand the full consequences of an incident and plan mitigation actions accordingly. Additionally, the approach will help to further strengthen the resilience of the entire city as well as the individual critical infrastructures in crisis situations.
|
|