Hongmin Li, Doina Caragea, & Cornelia Caragea. (2021). Combining Self-training with Deep Learning for Disaster Tweet Classification. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 719–730). Blacksburg, VA (USA): Virginia Tech.
Abstract: Significant progress has been made towards automated classification of disaster or crisis related tweets using machine learning approaches. Deep learning models, such as Convolutional Neural Networks (CNN), domain adaptation approaches based on self-training, and approaches based on pre-trained language models, such as BERT, have been proposed and used independently for disaster tweet classification. In this paper, we propose to combine self-training with CNN and BERT models, respectively, to improve the performance on the task of identifying crisis related tweets in a target disaster where labeled data is assumed to be unavailable, while unlabeled data is available. We evaluate the resulting self-training models on three crisis tweet collections and find that: 1) the pre-trained language model BERTweet is better than the standard BERT model, when fine-tuned for downstream crisis tweets classification; 2) self-training can help improve the performance of the CNN and BERTweet models for larger unlabeled target datasets, but not for smaller datasets.
|
Julien Coche, Aurelie Montarnal, Andrea Tapia, & Frederick Benaben. (2020). Automatic Information Retrieval from Tweets: A Semantic Clustering Approach. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 134–141). Blacksburg, VA (USA): Virginia Tech.
Abstract: Much has been said about the value of social media messages for emergency services. The new uses related to these platforms bring users to share information, otherwise unknown in crisis events. Thus, many studies have been performed in order to identify tweets relating to a crisis event or to classify these tweets according to certain categories. However, determining the relevant information contained in the messages collected remains the responsibility of the emergency services. In this article, we introduce the issue of classifying the information contained in the messages. To do so, we use classes such as those used by the operators in the call centers. Particularly we show that this problem is related to named entities recognition on tweets. We then explain that a semi-supervised approach might be beneficial, as the volume of data to perform this task is low. In a second part, we present some of the challenges raised by this problematic and different ways to answer it. Finally, we explore one of them and its possible outcomes.
|
Monika Büscher, Lisa Wood, & Sung-Yueh Perng. (2013). Privacy, security, liberty: Informing the design of EMIS. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 401–410). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper explores issues of security, privacy and liberty arising in relation to ICT supported emergency management. The aim is to inform the design of emergency management information systems (EMIS) and architectures that support emergent interoperability and assembly of emergency management systems of systems. We show how transformations of social and material practices of privacy boundary management create challenges, opportunities and dangers in this context. While opportunities include development of more efficient and agile emergency management models, building on smart city concepts, dangers include surveillance, social sorting and an erosion of civil liberties. Against this backdrop, we briefly explore human practice focused 'privacy by design' as a candidate design avenue.
|
Tasneem, F., Chakraborty, S., & Chy, A. N. (2023). An Early Synthesis of Deep Neural Networks to Identify Multimodal Informative Disaster Tweets. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 428–438). Omaha, USA: University of Nebraska at Omaha.
Abstract: Twitter is always worthwhile in facilitating communication during disasters. It helps in raising situational awareness and undertaking disaster control actions as quickly as possible to alleviate the miseries. But the noisy essence of Twitter causes difficulty in distinguishing relevant information from the heterogeneous contents. Therefore, extracting informative tweets is a substantial task to help in crisis intervention. Analyzing only the text or image content of the tweet often misses necessary insights which might be helpful during disasters. In this paper, we propose a multimodal framework to address the challenges of identifying informative crisis-related tweets containing both texts and images. Our presented approach incorporates an early fusion strategy of BERT-LSTM and ResNet50 networks which effectively learns from the joint representation of texts and images. The experiments and evaluation on the benchmark CrisisMMD dataset show that our fusion method surpasses the baseline by 7% and substantiates its potency over the unimodal systems.
|
Tiberiu Sosea, Iustin Sirbu, Cornelia Caragea, Doina Caragea, & Traian Rebedea. (2021). Using the Image-Text Relationship to Improve Multimodal Disaster Tweet Classification. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 691–704). Blacksburg, VA (USA): Virginia Tech.
Abstract: In this paper, we show that the text-image relationship of disaster tweets can be used to improve the classification of tweets from emergency situations. To this end, we introduce DisRel, a dataset which contains 4,600 multimodal tweets, collected during the disasters that hit the USA in 2017, and manually annotated with coherence image-text relationships, such as Similar and Complementary. We explore multiple models to detect these relationships and perform a comprehensive analysis into the robustness of these methods. Based on these models, we build a simple feature augmentation approach that can leverage the text-image relationship. We test our methods on 2 tasks in CrisisMMD: Humanitarian Categories and Damage Assessment, and observe an increase in the performance of the relationship-aware methods.
|
Wang, D. (2023). Public Cognition and Perception on Social Media in Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 1081–1082). Omaha, USA: University of Nebraska at Omaha.
Abstract: Microblogging platforms have been increasingly used in crisis, facilitating more participatory communication between official response channels and affected communities. Despite the potential benefits, research has shown that disaster response organizations could not effectively utilize social media data due to data deluge (Knox 2022). To better understand the information needed for disaster response, we turn to the National Incident Management System Guidance for public information officers (PIOs) (NIMS Basic Guidance for PIOs 2020), the primary spokesperson for emergency management organizations. The guidance indicates that PIOs use social media for two major purposes, supporting their operational needs and gauging public perception of risk and incident response. To support the operational needs, the crisis informatics literature has heavily focused on information types supporting situational awareness, including serviceable, eyewitness or actionable information. However, the information representing public perception, such as people’s cognitive and perceptual processes in response to incidents, has been less addressed at scale. To bridge the gap between quantitative study in crisis informatics and information representing cognitive and perceptual processes and better support the task of PIOs, I focus on the study of people’s cognitive and perceptual processes on social media for my research. Cognitive and perceptual processes refer to the way that people pay attention to or process environmental inputs, including the mental activities of acquisition, processing or evaluation of environmental cues, social cues, and warnings. These processes reveal people’s perception of- and decision-making in response to potential threats. With this focus, I seek to answer the following research question: How could people’s cognitive and perceptual processes be inferred from their social media activities in crisis to benefit stakeholders in incident response? My interest in tracing this overall theme through a varied range of sub-tasks produces three more specific research questions: RQ1. How can information exposure and attention be operationalized to highlight cognitive and perceptual processes? RQ2. How do people’s perception of risk communications from stakeholders vary in crisis? RQ3. How could a principled and scalable pipeline be designed to identify people’s cognitive and affective perceptions on Twitter? I took cues from the Protective Action Decision Model (Lindell and Perry 2012) and leveraged baselines in the literature to address these research questions. To address the first research question, I proposed a metric that conceptualized and operationalized the predecision process. The proposed metric was incorporated into a pipeline and applied to two real-word events to recommend messages that represent the shift of collective attention of those locally affected with a specialized focus on cognitive and perceptual processes. To address the second research question, I went beyond the perception of risks to include perceptions of risk communications by stakeholders. I performed an empirical study of the relation between risk communications by stakeholders and different kinds of public perceptions (Lindell and Perry 2012). To address the third research question, I proposed a future work to provide benchmark coding schemes, datasets and models to quantitatively identify information representing cognitive and perceptual processes. I will leverage existing benchmark datasets in the literature (Olteanu et al. 2014; Imran et al. 2016; Alam et al. 2018; Zahra et al. 2020; Rudra et al. 2017; Mazloom et al. 2018; Purohit et al. 2018) and coding schemes in qualitative studies (Trumbo et al. 2016; Demuth et al. 2018) and create benchmark classification models.
|
Zijun Long, & Richard McCreadie. (2022). Is Multi-Modal Data Key for Crisis Content Categorization on Social Media? In Rob Grace, & Hossein Baharmand (Eds.), ISCRAM 2022 Conference Proceedings – 19th International Conference on Information Systems for Crisis Response and Management (pp. 1068–1080). Tarbes, France.
Abstract: The user-base of social media platforms, like Twitter, has grown dramatically around the world over the last decade. As people post everything they experience on social media, large volumes of valuable multimedia content are being recorded online, which can be analysed to help for a range of tasks. Here we specifically focus on crisis response. The majority of prior works in this space focus on using machine learning to categorize single-modality content (e.g. text of the posts, or images shared), with few works jointly utilizing multiple modalities. Hence, in this paper, we examine to what extent integrating multiple modalities is important for crisis content categorization. In particular, we design a pipeline for multi-modal learning that fuses textual and visual inputs, leverages both, and then classifies that content based on the specified task. Through evaluation using the CrisisMMD dataset, we demonstrate that effective automatic labelling for this task is possible, with an average of 88.31% F1 performance across two significant tasks (relevance and humanitarian category classification). while also analysing cases that unimodal models and multi-modal models success and fail.
|