|
Pablo Acuña, Paloma Díaz, & Ignacio Aedo. (2010). Development of a design patterns catalog for Web-based Emergency Management Systems. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The design of Emergency Management Systems is an activity that requires knowledge from various related domains for providing a more complete and usable solution. In this context, design patterns including knowledge from previous experiences can be a useful source of information to support the development of this type of applications. In this paper, we introduce a catalog of design patterns for Web-based Emergency Management Systems collected from design principles, design patterns and existing implementations from involved areas, taking into account requirements particular to this domain.
|
|
|
Ronja Addams-Moring, Markku Kekkonen, & Shushan Zhao. (2005). A simple taxonomy for mobile emergency announcement systems. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 309–316). Brussels: Royal Flemish Academy of Belgium.
Abstract: Mobile communications networks and devices can be and have been used by authorities to warn and instruct the general public during crises. However, our understanding of how mobile technologies could best be used for emergency announcements (public warnings) is currently limited. To clarify one part of this field of study, we define and describe a simple taxonomy for mobile emergency announcements (MEA) systems. The taxonomy has three categories: preplanned MEA systems, ad-hoc MEA systems and semi ad-hoc MEA systems. Differences in functional, security and other requirements were found between MEA systems belonging to different taxonomy categories, both concerning how each category of MEA systems can meet the common requirements, and concerning which requirements are the most important for each category of MEA systems. The differences between the categories were especially clear for these requirements: the understandability and credibility of the MEAs and the security of a MEA system.
|
|
|
Ignacio Aedo, Daniel Sanz, Paloma Díaz, & Jorge De Castro. (2006). Modelling emergency response communities using RBAC principles. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 426–434). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: One of the main design challenges of any Emergency Management System (EMS) is the diversity of users and responsibilities that must be considered. Modelling the access capabilities of different communities of users is a relevant concern for which the RBAC (Role-Based Access Control) paradigm provides flexible and powerful constructs. In this paper we describe how we used an RBAC meta-model to specify at different levels of abstraction the access policy of a specific EMS called ARCE (Aplicación en Red para Casos de Emergencia). This approach has made it possible to face access modelling at earlier development stages, so that stakeholders got involved in analytical and empirical evaluations to test the correctness and effectiveness of the access policy. Moreover, since the RBAC meta-model is embedded into a web engineering method, we put into practice a holistic process which addresses different design perspectives (structure, navigation, presentation, interaction and access) in an integrated way.
|
|
|
Michael Alles, Alexander Kogan, Miklos Vasarhelyi, Starr Roxanne Hiltz, & Murray Turoff. (2004). Assuring homeland security: Continuous monitoring, control and assurance of Emergency Preparedness. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management (pp. 1–7). Brussels: Royal Flemish Academy of Belgium.
Abstract: This paper examines the potential relationships of Auditing and Emergency Preparedness with respect to the domain of the design of Emergency Response Information Systems. It proposes normative objectives for the integration of all these areas in the design of future organizational systems. It also proposes a series of steps to evolve in this direction and create a new interdisciplinary professional community to guide research and development for this field of endeavor. © Proceedings ISCRAM 2004.
|
|
|
Michael Ammann, Tuomas Peltonen, Juhani Lahtinen, Kaj Vesterbacka, Tuula Summanen, Markku Seppänen, et al. (2010). KETALE Web application to improve collaborative emergency management. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: KETALE is a database and web application intended to improve the collaborative decision support of the Finnish Radiation and Nuclear Safety Authority (STUK) and of the Finnish Meteorological Institute (FMI). It integrates distributed modeling (weather forecasts and dispersion predictions by FMI, source term and dose assessments by STUK) and facilitates collaboration and sharing of information. It does so by providing functionalities for data acquisition, data management, data visualization, and data analysis. The report outlines the software development from requirement analysis to system design and implementation. Operational aspects and user experiences are presented in a separate report.
|
|
|
Bo Andersson, & Jonas Hedman. (2006). Issues in the development of a mobile based communication platform for the swedish police force and appointed security guards. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 181–187). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: This paper presents the learning experiences from the development of a mobile-based communication platform, called OrdningsVaktsCentralen (OVC). OVC can be translated to Security Guard Central. OVC is designed to enable the Swedish Police Force (SPF) to comply with new legal requirements and enhance their collaboration with Appointed Security Guards (ASG). The focus of this paper is on the early phases of development; in particular on the specific technical issues such as interoperability and standards used in the development of mobile based systems. The learning experiences are as follows: firstly, when developing mobile based systems we suggest and recommend that the analysis phase should be enhanced and it should address the interoperability between mobile phones on one hand and operators on the other hand. Secondly, global and national standards, such as the MMS7 for sending multi-media messages, are not always standardized. It seems that operators and mobile phone manufacturers make minor alterations and interpretations of the standard and thereby some of the benefits found in standards disappear. Thirdly, mobile based communication platforms have a large potential for contributing to the field of emergency management information systems since they can be based on open and nationally accepted standards.
|
|
|
Laura Ardila, Israel Perez-Llopis, Carlos E. Palau, & Manuel Esteve. (2013). Virtual reality training environment for strategic and tactical emergency operations. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 140–144). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: The application of Information and Communication Technologies in emergency management environments is a challenging research topic; particularly, the applicability of C4ISR (Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance) systems specifically designed for these environments. A key aspect in emergency management is the training of operatives at all levels, from intervention to operational, including tactical command and control. Virtual reality is widely used for training and learning purposes, but the interaction of real and virtual worlds with new standards (i.e. MPEG-V), going a step further from the traditional approach to create virtual environments based in expensive simulation dedicated equipment and allowing data streaming between both worlds, has not yet been exploited in training for emergency management. This paper proposes an architecture for a C4ISR training system providing interoperability between real and virtual worlds using the MPEG-V standard and allowing simultaneous and real time training of both real and virtual units.
|
|
|
Gaston C. Armour, & Hero Tameling. (2011). Collaborative relationships are key to community resilience and emergency preparedness. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The United States of America experienced two major incidents that changed the countrys perspective on emergency preparedness: September 11, 2001 World Trade Center attacks, and Hurricane Katrina in 2005. Since that time the United States Department of Homeland Security established 10 separate Regional Catastrophic Planning Teams (RCPT) around the country. These RCPTs were set-up to inform, train and determine the effectiveness of mutual-aid coordination and prepare individuals, families and communities for an “all-hazard” environment. As RCPT members representing one state agency providing human services, the authors proposed an initiative, based on a working model they had already deployed in their own agency, to enhance emergency preparedness activities to include individual and community resiliency along with disaster and catastrophic planning. That request to expand the RCPT role, opened-up a dialogue to develop an innovative approach to collaborative partnerships. This shift afforded additional opportunities in times of a crisis, disaster or catastrophe.
|
|
|
Henrik Artman, Joel Brynielsson, Björn J.E. Johansson, & Jiri Trnka. (2011). Dialogical emergency management and strategic awareness in emergency communication. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper introduces two concepts-dialogical emergency management and strategic awareness-as means to use and understand the content of social media for the purpose of emergency communication. Dialogical emergency management denotes that the emergency management organizations follow what people publish in various social media on emergencies and ongoing emergency response, and then adjust their information strategies in a way that matches the expectations and needs for emergency information of the public. The concept of strategic awareness suggests that it is essential to have an understanding of the receiver (public) of emergency information but also to have an understanding of the receivers' idea about the emergency and emergency response. Hence, the notion of strategic awareness incorporates structured awareness of how people interpret, value, and reacts on communication based on what they think about the sender's (emergency management organization's) actual intentions and motives.
|
|
|
Robert Baksa, & Murray Turoff. (2010). The current state of continuous auditing and emergency management's valuable contribution. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Continuous Auditing systems require that human judgment be formalized and automated, which can be a complex, costly and computationally intensive endeavor. However, Continuous Auditing systems have similarities with Emergency Management and Response systems, which integrate Continuous Auditing's detection and alerting functions with the tracking of decisions and decision options for the situations that could be more effectively handled by human judgment. Emergency Management and Response systems could be an effective prototype to help overcome some of the implementation obstacles that are impeding Continuous Auditing systems' implementation rate. Continuous Auditing has the potential to transform the existing audit paradigm from periodic reviews of a few accounting transactions to a continuous review of all transactions, which thereby could vastly strengthen an organization's risk management and business processes. Although Continuous Auditing implementations are occurring, their adoption is slower than expected. With the goal of providing an empirical and methodological foundation for future Continuous Auditing systems and possibly inspiring additional investigation into merging the Continuous Auditing and Emergency Management streams of research, this paper provides several definitions of Continuous Auditing, suggests possible architectures for these systems, lists some common implementation challenges and highlights a few examples of how Emergency Management research could potentially overcome them.
|
|
|
Irma Becerra-Fernandez, Weidong Xia, Arvind Gudi, & Jose Rocha. (2008). Task characteristics, knowledge sharing and integration, and emergency management performance: Research agenda and challenges. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 88–92). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Emergency management tasks are inherently complex and dynamic, requiring quick knowledge sharing and decision coordination among multiple organizations across different levels and locations. However, there is a general lack of understanding about how to describe and assess the complex and dynamic nature of emergency management tasks and how knowledge integration help managers improve emergency management task performance. This paper describes a research project that aims at (1) developing the concepts of task complexity and uncertainty of emergency management tasks and (2) testing the mediating role of knowledge sharing and knowledge integration between emergency management task characteristics and performance. The overall research agenda, approaches, challenges and the advantages of utilizing a virtual Emergency Operations Center (vEOC) for this line of research are discussed.
|
|
|
Roser Beneito-Montagut, Susan Anson, Duncan Shaw, & Christopher Brewster. (2013). Governmental social media use for emergency communication. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 828–833). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: The possibility of crowdsourced information, multi-geographical and multi-organisational information flows during emergencies and crises provided by web 2.0 tools are providing emergency management centres with new communication challenges and opportunities. Building on the existing emergency management and social media literature, this article explores how institutions are using and adopting social media for emergency communication. By examining the drivers and barriers of social media adoption in two European governmental agencies dealing with emergencies, the paper aims to establish a framework to examine whether and how institutional resilience could be improved.
|
|
|
Art Botterell, & Martin Griss. (2012). A pragmatic approach to smart workspaces for crisis management. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: We explore the nature and benefits of smart spaces from the perspective of the emergency management user, propose a design vocabulary and reference architecture for constructing feasible, robust and flexible smart spaces for crisis management, and offer some examples of how smart-space approaches might support crisis management. © 2012 ISCRAM.
|
|
|
Monika Büscher, Lisa Wood, & Sung-Yueh Perng. (2013). Privacy, security, liberty: Informing the design of EMIS. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 401–410). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: This paper explores issues of security, privacy and liberty arising in relation to ICT supported emergency management. The aim is to inform the design of emergency management information systems (EMIS) and architectures that support emergent interoperability and assembly of emergency management systems of systems. We show how transformations of social and material practices of privacy boundary management create challenges, opportunities and dangers in this context. While opportunities include development of more efficient and agile emergency management models, building on smart city concepts, dangers include surveillance, social sorting and an erosion of civil liberties. Against this backdrop, we briefly explore human practice focused 'privacy by design' as a candidate design avenue.
|
|
|
José H. Canós-Cerdá, Carmen Penadés, Abel Gómez, & Marcos R. S. Borges. (2012). SAGA: An integrated architecture for the management of advanced emergency plans. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Despite the significant advances that software and hardware technologies have brought to the emergency management field, some islands remain where innovation has had little impact. Among them, emergency plan management is of particular relevance due to their key role in the direction of teams during responses. Aspects like coordination, collaboration, and others are spread in plain text sentences, impeding automatic tool support to improve team per-formance. Moreover, administrative management of plans becomes a mere document management activity. In this paper, we present SAGA, an architecture that supports the full lifecycle of advanced emergency plan management. By advanced we mean plans that include new types of interaction such as hypermedia and advanced process definition languages to provide precise specification of response procedures. SAGA provides all the actors involved in plan management a number of tools supporting all the stages of the plan lifecycle, from its creation to its use in training drills or actual responses. It is intended to be instantiated in systems promoted by civil defense agencies, providing administrative support to plan management; additionally, editing tools for plan designers and tools for analysis and improvement of such plans by organizations are provided. Plan enactment facilities in emergency response are also integrated. To our knowledge, it is the very first proposal that covers all the aspects of plan man-agement. © 2012 ISCRAM.
|
|
|
Andrea Capata, Andrea Marrella, Ruggero Russo, Manfred Bortenschlager, & Harald Rieser. (2008). A geo-based application for the management of mobile actors during crisis situations. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 219–229). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: The widespread availability of network-enabled handled devices has made the development of pervasive computing applications an emerging reality particularly suitable for managing emergency/disaster situations. Moreover in emergency management scenarios, Geographic Information Systems (GIS) are gaining momentum for their capacity to capture, analyze and manage geo-referenced data. In this paper we discuss an architecture designed to support rescue teams operating in outdoor environments and equipped with mobile devices working in a P2P fashion within a Mobile Ad-hoc Network (MANET). Our system has been designed to effectively address the on-field working persons' need for geographic information that cannot be supplied by conventional paper-based maps. Our approach provides a transparent access to geo-information and to GIS functionalities, and it addresses issues specifically relevant to emergency management scenarios in open fields.
|
|
|
Benny Carlé, Fernand Vermeersch, & Carlos Rojas Palma. (2004). Systems improving communication in case of a nuclear emergency: Two information exchange systems in the Belgian Nuclear Research Center. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2004 – 1st International Workshop on Information Systems for Crisis Response and Management (pp. 57–62). Brussels: Royal Flemish Academy of Belgium.
Abstract: Creating a 'common view' between all stakeholders on the course of an emergency situation and the possible consequences is a challenge for any crisis management organisation. In the SCKâEUR¢CEN nuclear emergency preparedness research two projects address two different and particular communication or information management challenges. The HINES system aims at creating a common view by using an information system as a communication tool in an on-site nuclear emergency response room. The MODEM project uses XML-technology to stimulate communication between scientific experts from different countries and institutes by facilitating the exchange of information used in decision support models used to assess the impact of a release of radioactive material in the environment. Both systems are implemented in prototype phase and used regularly during exercises. © Proceedings ISCRAM 2004.
|
|
|
Emma Carter, & Simon French. (2005). Nuclear emergency management in Europe: A review of approaches to decision making. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 247–259). Brussels: Royal Flemish Academy of Belgium.
Abstract: The need for transparent and consistent decision making in nuclear emergency management across local, regional, national and international levels is well recognised. Several decision support systems have been developed to help achieve this; but, by and large, with little consultation with potential DMs and with limited understanding of the emergency management procedures across Europe and how they differ. This work, part of a European Fifth Framework project EVATECH, considers the application of process modelling to document and compare the emergency management process in four countries. We have observed that the four process models are substantially different in their organizational structure and identified differences in where decisions are made, the management of advice and the communication network style. This papers focus is on the results of the comparison and the implications for the design and use of decision support systems.
|
|
|
Michael J. Chumer, & Murray Turoff. (2006). Command and control (C2): Adapting the distributed military model for emergency response and emergency management. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 465–476). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: The military use of Command and Control (C2) has been refined over centuries of use and developed through years of combat situations. This C2 model is framed as process, function, and organization, suggesting that emergency response organizations and emergency management structure their non military C2 and subsequent response scenarios within the C2 framework established in this paper.
|
|
|
Tina Comes, Claudine Conrado, Michael Hiete, Michiel Kamermans, Gregor Pavlin, & Niek Wijngaards. (2010). An intelligent decision support system for decision making under uncertainty in distributed reasoning frameworks. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents an intelligent system facilitating better-informed decision making under severe uncertainty as found in emergency management. The construction of decision-relevant scenarios, being coherent and plausible descriptions of a situation and its future development, is used as a rationale for collecting, organizing, filtering and processing information for decision making. The development of scenarios is geared to assessing decision alternatives, thus avoiding time-consuming analysis and processing of irrelevant information. The scenarios are constructed in a distributed setting allowing for a flexible adaptation of reasoning (principles and processes) to the problem at hand and the information available. This approach ensures that each decision can be founded on a coherent set of scenarios, which was constructed using the best expertise available within a limited timeframe. Our theoretical framework is demonstrated in a distributed decision support system by orchestrating both automated systems and human experts into workflows tailored to each specific problem.
|
|
|
Tina Comes, Niek Wijngaards, & Frank Schultmann. (2012). Efficient scenario updating in emergency management. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Emergency managers need to assess, combine and process large volumes of information with varying degrees of (un)certainty. To keep track of the uncertainties and to facilitate gaining an understanding of the situation, the information is combined into scenarios: stories about the situation and its development. As the situation evolves, typically more information becomes available and already acknowledged information is changed or revised. Meanwhile, decision-makers need to keep track of the scenarios including an assessment whether the infor-mation constituting the scenario is still valid and relevant for their purposes. Standard techniques to support sce-nario updating usually involve complete scenario re-construction. This is far too time-consuming in emergency management. Our approach uses a graph theoretical scenario formalisation to enable efficient scenario updating. MCDA techniques are employed to decide whether information changes are sufficiently important to warrant scenario updating. A brief analysis of the use-case demonstrates a large gain in efficiency. © 2012 ISCRAM.
|
|
|
Erman Coskun, & Dilek Ozceylan. (2011). Complexity in emergency management and disaster response information systems (EMDRIS). In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Today emergencies seem more complex than ever. Process of managing these emergencies also becomes more complex because of increasing number of involved parties, increasing number of people affected, and increasing amount of resources. This complexity, inherent in emergency management, brings lots of challenges to decision makers and emergency responders. Information systems and technologies are utilized in different areas of emergency management. However complexity increases exponentially in emergency situations and it requires more sophisticated IS and IT and it makes response and management more challenging. Thus analyzing the root causes of emergency management information systems complexity is crucial for improving emergency response effectiveness. This paper frames the issue of information systems complexity by focusing on the types of complexities involved in emergency management phases and explaining each complexity type. We propose 6 different complexity types: Human Complexity, Technologic Complexity, Event Complexity, Interaction Complexity, Decision Making Complexity, and Cultural Complexity.
|
|
|
Martine Couturier, & Edith Wilkinson. (2005). Open advanced system for improved crisis management (OASIS). In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 283–286). Brussels: Royal Flemish Academy of Belgium.
Abstract: The OASIS Project addresses the Strategic objective 2.3.2.9, “Improving Risk Management”, of the second call for tender of the European Commission FP6 Information Society Technologies program. The objective of OASIS is to define and develop an Information Technology (IT) framework based on an open and flexible architecture and using standards that will be the basis of a European Emergency Management system. OASIS is intended to facilitate the cooperation between the information systems used by civil protection organisations, in a local, regional, national or international environment. This Disaster and Emergency Management system aims to support the response operations in the case of large scale as well as local emergencies.
|
|
|
Steven Curnin, & Christine Owen. (2013). A typology to facilitate multi-agency coordination. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 115–119). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Multi-agency coordination in emergency management presents many challenges. Agencies that normally operate independently have to assemble into a unified supra organization to achieve a common goal. To achieve successful multi-agency coordination organizations need to span organizational boundaries and provide linkages with multiple agencies. This requires interorganizational compatibility of information and communication systems. Necessary for this success are the stakeholders responsible for facilitating these organizational boundary spanning activities. This paper proposes that the preliminary research findings can create a typology of dimensions crucial to facilitating multi-agency emergency management coordination. It is envisaged that the typology will culminate into a diagnostic tool that will enable stakeholders to examine the breakdowns and successes of multi-agency emergency management coordination.
|
|
|
Gonçalo De Jesus, Anabela Oliveira, Maria A. Santos, & João Palha-Fernandes. (2010). Development of a dam-break flood emergency information system. In C. Zobel B. T. S. French (Ed.), ISCRAM 2010 – 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. Seattle, WA: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper presents a new information system, SAGE-B, structured to support all fundamental data related to dams and the elements associated to an emergency in case of a dam-break flood. Data such as information about the population located in the areas at risk or the vehicles available for rescue that are located in the areas impacted by the predicted flood are always changing. In order to support an effective update of the required information for emergency management, an emergency information system was conceived and proposed. This paper describes the motivation for this research and the basic requirements from an emergency management perspective. The platform has a modular architecture, developed in open and free technologies, which allows a continuous development and improvement. Examples of future developments include a multichannel emergency warning system, flood wave real-time forecast and dam-breaching real-time monitoring models.
|
|