Christine Adler, Marion Krüsmann, Thomas Greiner-Mai, Anton Donner, Javier Mulero Chaves, & Àngels Via Estrem. (2011). IT-supported management of mass casualty incidents: The e-triage project. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Voice, analogue mobile radio, and paper have een successfully used for decades for coordination of emergencies and disasters, but although being simple and robust this approach cannot keep pace with todays requirements any more. Emerging and established digital communication standards open the door to new applications and services, but the expected benefit needs to be carefully evaluated against robustness, interoperability, and user-friendliness. This paper describes a framework for IT-supported management of mass casualty incidents, which is currently under implementation and study. The four pillars of the concept are handheld devices for use both in daily rescue operations and in disasters, autonomous satellite-based communication infrastructure, a distributed database concept for maximal availability, and psychological acceptance research.
|
T. Benjamins, & Leon J.M. Rothkrantz. (2007). Interactive simulation in crisis management. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 571–580). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Experiments in crisis management are expensive and difficult to realize. There is also a lack of training facilities in real crisis environments. Serious games and simulation can provide an alternative. We developed a system which enables interactive simulation for crisis management. It is called IMACSIM (Interactive Multi Agent Crisis Simulator Interpreter and Monitor). It is composed of the following components: First a software based platform for dynamic simulating of disasters. Next an event generator which can generate different crises situations. We designed a communication infrastructure that allows agents participants in the simulation to exchange messages. Every agent is able to observe the results of crisis events, process these events and initiate appropriate actions via a waypoint system. The decision making process is distributed among autonomous agents. Some actions may have an impact on the event generator, so there is an interaction between agents and event generator. We developed a first prototype. The design and test results will be described in this paper.
|
Axel Bürkle, Florian Segor, Sven Müller, Igor Tchouchenkov, & Matthias Kollmann. (2012). Advantages of an integrated open framework for immediate emergency response. In Z.Franco J. R. L. Rothkrantz (Ed.), ISCRAM 2012 Conference Proceedings – 9th International Conference on Information Systems for Crisis Response and Management. Vancouver, BC: Simon Fraser University.
Abstract: Recent disasters have shown that wireless sensors and unmanned systems are increasingly becoming a valuable aid for first responders. Depending on the kind of incident and its extent, different assets are to be used. The more diverse these assets are, the more complex their simultaneous use and coordination. Therefore, integrated solutions are needed which comprise all necessary components such as power supply, communication infrastructure, data acquisition and processing, decision support and information dissemination. In this paper, an architecture for an open framework is proposed and its advantages over dedicated solutions are discussed. The flexibility of the universal control station presented here is demonstrated using the example of integrating a smartphone as an additional mobile sensor. © 2012 ISCRAM.
|
Rahele B. Dilmaghani, B.S. Manoj, & Ramesh R. Rao. (2006). Emergency communication challenges and privacy. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 172–180). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Communication and interoperability between different organizations of first responders has been a problem for a long time. There have been examples of failure in communication between different organizations at World Trade Center on 9/11, for example some of the police warnings were not heard by fire fighters that resulted in several lives lost. In most cases, network unavailability or incapability of coordination among networks causes much damage. Therefore, we present a highly reliable communication infrastructure that is suitable at ground zero where the existing communication network is damaged or unavailable. We used Hybrid Wireless Mesh Network (HWMN) as a candidate for communication infrastructure with the capability of working in a heterogeneous environment with different available backhaul technologies. In addition to the use of WMNs, we also present some special requirements for a cellular networks generated by simulation models investigating different scenarios that occur at ground zero. For example, when hurricane Katrina hit New Orleans, people outside the ground zero area could place a call, but were not able to receive phone calls. This happened because the cellular network elsewhere was not able to contact the Home Location Register (HLR), located at New Orleans. We, in this paper, propose a solution in which the important user or network information databases such as HLR and VLR (Visitor Location Register) are replicated to provide a sufficient amount of fault tolerance.
|
Rahele B. Dilmaghani, & Ramesh R. Rao. (2008). A wireless mesh infrastructure deployment with application for emergency scenarios. In B. V. de W. F. Fiedrich (Ed.), Proceedings of ISCRAM 2008 – 5th International Conference on Information Systems for Crisis Response and Management (pp. 484–494). Washington, DC: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: When a disaster or emergency occurs, one of the most pressing needs is to establish a communication network for the first responders at the scene. Establishing and accessing a reliable communication infrastructure at a crisis site is crucial in order to have accurate and real-time exchange of information. Failure in the exchange of timely and crucial information or delay in allocating resources impedes early response efforts, potentially resulting in loss of life and additional economic impact. At a disaster site, the existing communication infrastructure may be damaged and therefore partially or totally unavailable; or, there may not have been previously existing infrastructure (as in the case of remote areas). A communication infrastructure within the context of emergency applications should be reliable, easily configurable, robust, interoperable in a heterogeneous environment with minimum interdependencies, and quickly deployable at low cost. A disaster scene is a chaotic environment which requires a systematic approach to abstract the system, study the flow of information and collaboration among different disciplines and jurisdictions to facilitate response and recovery efforts. We have deployed the wireless mesh infrastructure in several drills at the university campus and in the city as part of the California Institute for Telecommunications and Information Technology (Calit2) NSF-funded RESCUE project (Responding to Crises and Unexpected Events). To evaluate network performance and identify the source(s) of bottleneck, we have captured the network traffic. The lessons learned from test bed evaluations of the network based on real-world scenarios can be applied to future applications to enhance the network design and performance.
|
Abdullah Konak. (2014). Improving network connectivity in emergency ad hoc wireless networks. In and P.C. Shih. L. Plotnick M. S. P. S.R. Hiltz (Ed.), ISCRAM 2014 Conference Proceedings – 11th International Conference on Information Systems for Crisis Response and Management (pp. 36–44). University Park, PA: The Pennsylvania State University.
Abstract: Wireless Ad Hoc Networks (MANETs) can to provide first responders and disaster management agencies with a reliable communication network in the event of a large-scale natural disaster that devastates majority of the existing communication infrastructure. Without requiring a fixed infrastructure, MANETs can be quickly deployed after a large-scale natural disaster or a terrorist attack. On the other hand, MANETs have dynamic topologies which could be disconnected because of the mobility of nodes. This paper presents a decentralized approach to maintain the connectivity of a MANET using autonomous, intelligent agents. Concepts from the social network analysis along with flocking algorithms are utilized to guide the deployment decision of agents. Unlike a basic flocking algorithm where all nodes have the same importance, network metrics are used to quantify the relative importance of nodes. Computational results are presented to demonstrate the effect of various local agent behaviors on the global network connectivity.
|
Jonas Lundberg, & Mikael Asplund. (2011). Communication problems in crisis response. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper describes five problem areas of communication that occur during crisis response. These areas are communication infrastructure, situation awareness, individual and organizational common ground, form and content of messages, and communication paths through organizations. Five focus groups with Swedish field personnel from national and international crises were performed. The main contribution of this article is a hypothesis, based on the outcomes of the focus groups, about the relation between communication problems and how they interact with crisis response work.
|
Kamil Panitzek, Immanuel Schweizer, Dirk Bradler, & Max Mühlhäuser. (2011). City mesh – Resilient first responder communication. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Communication between first responders is vital to the success of large scale disaster management. But communication technologies used by first responders today do not scale well due to heterogeneity, point-topoint connections, and centralized communication structures. As the popularity of devices equipped with Wi-Fi grows, the number of access points (APs) in city centers increases as well. This communication infrastructure exists and should be used in city wide disasters as it is readily available in areas with high population density. In this paper, we investigate Wi-Fi access points in 5 major cities deployed in stores, bars, and restaurants. We want to answer the question if these APs can be used as a mesh networking backbone in disaster response. The main contributions of this paper are (i) the surveyed and analyzed public Wi-Fi layout of five major cities and (ii) the connectivity analysis of the city wide network topology.
|
Christian Reuter. (2013). Power outage communications: Survey of needs, infrastructures and concepts. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 884–889). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: Crisis communication during power outages poses several challenges. Frist, the causes of power outages are often events such as severe weather, which also lead to complications. Second, power outages themselves lead to limitations in everyday life. Third, communication infrastructures, that are necessary for crisis communication, are often affected. This work focuses on the communication of the organizations responsible for recovery work (emergency services, public administration, energy network operators) to the public affected by the power outage. Therefore this paper investigates the perception and the information demands of citizens and communication infrastructures in different scenarios. Taking the users' needs into consideration, an Information and Communication Technology (ICT) based concept for crisis communication, which combines general information with location-specific and setting-specific information was implemented as a prototype smartphone application and evaluated with 12 potential end users. ICT-based concepts can gain acceptance, however they should be understood as supplemental for some target groups and in some scenarios.
|