Debora Robles Perez, Manuel Esteve Domingo, Israel Perez Llopis, & Federico J. Carvajal Rodrigo. (2020). System and Architecture of an Adapted Situation Awareness Tool for First Responders. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 928–936). Blacksburg, VA (USA): Virginia Tech.
Abstract: First responders (FRs) in Europe are currently facing large natural and man-made disasters (e.g. wild fire, terrorist attacks, industrial incidents, big floods, gas leaks etc.), that put their own lives and those of thousands of others at risk. Adapted situation awareneSS tools and taIlored training curricula for increaSing capabiliTies and enhANcing the proteCtion of first respondErs (ASSISTANCE) is an ongoing European H2020 project which main objective is to increase FRs Situation Awareness (SA) for helping and protecting different kinds of FRs' organizations that work together in large scale disasters mitigation. ASSISTANCE will enhance the SA of the FRs organisations during their mitigation activities through the integration of new paradigms, tools and technologies (e.g. drones/robots equipped with a range of sensors, robust communications capabilities, etc.) with the main objective of increasing both their protection and their efficiency.
|
|
Sadeeb Ottenburger, & Thomas Münzberg. (2017). An Approach for Analyzing the Impacts of Smart Grid Topologies on Critical Infrastructure Resilience. In eds Aurélie Montarnal Matthieu Lauras Chihab Hanachi F. B. Tina Comes (Ed.), Proceedings of the 14th International Conference on Information Systems for Crisis Response And Management (pp. 400–411). Albi, France: Iscram.
Abstract: The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of vital services of critical infrastructures. An elaborated topology of smart grids can increase urban resilience. In this paper, we discuss the role of smart grids, give research impulses for examining diverse smart grid topologies and for evaluating their impacts on urban resilience by using an agent based simulation approach which considers smart grid topology as a model parameter.
|
|
Axel Dierich, Katerina Tzavella, Neysa Jacqueline Setiadi, Alexander Fekete, & Florian Neisser. (2019). Enhanced Crisis-Preparation of Critical Infrastructures through a Participatory Qualitative-Quantitative Interdependency Analysis Approach. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: Critical Infrastructure (CI) failures are aggravated by cascading effects due to interdependencies between
different infrastructure systems and with emergency management. Findings of the German, BMBF-funded
research project ?CIRMin? highlight needs for concrete assessments of such interdependencies. Driven by
challenges of limited data and knowledge accessibility, the developed approach integrates qualitative
information from expert interviews and discussions with quantitative, place-based analyses in three selected
German cities and an adjacent county.
This paper particularly discusses how the mixed methods approach has been operationalized. Based on
anonymized findings, it provides a comprehensive guidance to interdependency analysis, from survey and
categorization of system elements and interrelations, their possible mutual impacts, to zooming into selected
dependencies through GIS mapping. This facilitates reliably assessing the need for maintenance of critical
functionalities in crisis situations, available resources, auxiliary powers, and optimization of response time.
|
|
Juan Francisco Carías, Leire Labaka, Jose Maria Sarriegi, Andrea Tapia, & Josune Hernantes. (2019). The Dynamics of Cyber Resilience Management. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: With the latent problem of security breaches, denial of service attacks, other types of cybercrime, and cyber incidents in general, the correct management of cyber resilience in critical infrastructures has become a high priority. However, the very nature of cyber resilience, requires managing variables whose effects are hard to predict, and that could potentially be expensive. This makes the management of cyber resilience in critical infrastructures a substantially hard task.
To address the unpredictability of the variables involved in managing cyber resilience, we have developed a system dynamics model that represents the theoretical behaviors of variables involved in the management of cyber resilience. With this model, we have simulated different scenarios that show how the dynamics of different variables act, and to show how the system would react to different inputs.
|
|
Wolfgang Raskob, Stefan Wandler, & Evgenia Deines. (2015). Agent-based modelling to identify possible measures in case of Critical Infrastructure disruption. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: Understanding critical infrastructures and in particular protecting them in case of natural or man-made threats or disasters is the objective of our research. As use case, the security of the power supply in the year 2030 for the city of Karlsruhe was selected. This scenario contains interdependencies between the electrical power grid and IT components as well as critical infrastructures such as water supply and health care. To simulate the critical infrastructure, their dependencies and potential measures to mitigate effects, agent based simulation models have been developed and applied. The ultimate objective of the research activity is to develop a holistic analysis framework to quantify and evaluate requirements and design decisions of the many players in such complex infrastructures.
|
|