Ahmed S. Khalaf, Poom Pianpak, Sultan A. Alharthi, Zahra NaminiMianji, Ruth Torres, Son Tran, et al. (2018). An Architecture for Simulating Drones in Mixed Reality Games to Explore Future Search and Rescue Scenarios. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 971–982). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: The proliferation of unmanned aerial systems (i.e., drones) can provide great value to the future of search and rescue. However, with the increase adoption of such systems, issues around hybrid human-drone team coordination and planning will arise. To address these early challenges, we provide insights into the development of testbeds in the form of mixed reality games with simulated drones. This research presents an architecture to address challenges and opportunities in using drones for search and rescue. On this architecture, we develop a mixed reality game in which human players engage with the physical world and with gameplay that is purely virtual. We expect the architecture to be useful to a range of researchers an practitioners, forming the basis for investigating and training within this unique, new domain.
|
Aikaterini Christodoulou, John Lioumbas, Kostantinos Zambetoglou, & Nikoletta Xanthopoulou. (2021). Combined innovative technologies for ensuring water safety in utilities: The city of Thessaloniki case study. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 929–934). Blacksburg, VA (USA): Virginia Tech.
Abstract: Innovative technologies such as monitoring the quality of surface water aquifers with satellite images, applying UAV (Unmanned Aerial Vehicle) and drone technology for a variety of operations, water quality measurements with improved techniques along with IoT (Internet of Things) and ICT (Information and Communication Technologies), can provide sufficient data for enhancing water safety in urban water utilities. Specifically, these data could be an effective tool for improving risk assessment process and management of water supply systems. Nevertheless, till now, there is a relative lack of published works that validate the efficiency of combing these technologies on water safety processes by incorporating most of them with a systematic way and during real working conditions in water utilities. This work aims to present the preliminary design concept of a platform that embraces innovating water safety technologies planned to be applied to Thessaloniki's Water Supply and Sewerage Co. S.A Standard Operating Procedures (SOP).
|
Balogh, Z., Gatial, E., Dolatabadi, S. H., Dlugolinský, Štefan, Saltarella, M., Scipioni, M. P., et al. (2023). Communication Protocol for using Nontraditional Information Sources between First Responders and Citizens during Wildfires. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 152–165). Omaha, USA: University of Nebraska at Omaha.
Abstract: One of the biggest challenges faced during the wildfires is communication. A specific case represents the need to establish communication between first responders and the public. This paper presents a proposal for a generic protocol to ensure effective communication between fire fighters and many citizens at the incident site or in the surrounding area using nontraditional information sources such as a dedicated mobile app or social media. Specific challenges, concepts and technologies relevant to such communication are described specifically customized for forest fires and wildfires. The protocol itself is provided by proposing information flows between the involved actors. Moreover, several technologies including a Citizen Engagement Mobile App, an Edge Micro Data Center for forward command centers, a Mesh in the Sky communication infrastructure or a Dashboard integrating and displaying all the data in one place is shortly introduced. The presented paper is a work in progress.
|
Claudio Paliotta, Klaus Ening, & Sigurd Mørkved Albrektsen. (2021). Micro indoor-drones (MINs) for localization of first responders. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 881–889). Blacksburg, VA (USA): Virginia Tech.
Abstract: In this paper, we describe our approach to the localization in GNSS-denied and risky unknown environments offirst responders (FRs). The INGENIOUS project is an EU funded project which is developing a new integratedtoolkit to support the operations of FRs. The micro indoor-drones (MINs) developed within the INGENIOUSproject represent a component of the toolkit which will support the localization of FRs in search-and-rescue (SAR)operations. In this paper, the concept behind the MINs and the current achievements are illustrated.
|
Edward J. Glantz, Frank E. Ritter, Don Gilbreath, Sarah J. Stager, Alexandra Anton, & Rahul Emani. (2020). UAV Use in Disaster Management. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 914–921). Blacksburg, VA (USA): Virginia Tech.
Abstract: Unmanned aerial vehicles (UAV) provide multiple opportunities to first responders and disaster managers, especially as they continue to improve in affordability as well as capabilities. This paper provides a brief review of how UAV capabilities have been used in disaster management, examples of current use within disaster management, as well as adoption considerations. Example disaster domains include fires, tornadoes, flooding, building and dam collapses, crowd monitoring, search and rescue, and post disaster monitoring of critical infrastructures. This review can increase awareness and issues when considering UAVs by those challenged with the management of crisis and disaster events.
|
Enrique Caballero, Angel Madridano, Dimitrios Sainidis, Konstantinos Konstantoudakis, Petros Daras, & Pablo Flores. (2021). An automated UAV-assisted 2D mapping system for First Responders. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 890–902). Blacksburg, VA (USA): Virginia Tech.
Abstract: Recent advances in the Unmanned Aerial Vehicles (UAVs) sector have allowed such systems to carry a range of sensors, thus increasing their versatility and adaptability to a wider range of tasks and services. Furthermore, the agility of these vehicles allows them to adapt to rapidly changing environments making them an effective tool for emergency situations. A single UAV, or a swarm working in collaboration, can be a handy and helpful tool for First Responders (FRs) during mission planning, mission monitoring, and the tracking of evolving risks. UAVs, with their on-board sensors, can, among other things, capture visual information of the disaster scene in a safe and quick manner, and generate an up-to-date map of the area. This work presents a system for UAV-assisted mapping optimized for FRs, including the generation of routes for the UAVs to follow, data collection and processing, and map generation.
|
Henrique Romano Correia, Ivison da Costa Rubim, Angelica F.S. Dias, Juliana B.S. França, & Marcos R.S. Borges. (2020). Drones to the Rescue: A Support Solution for Emergency Response. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 904–913). Blacksburg, VA (USA): Virginia Tech.
Abstract: Emergency is a threatening condition that requires urgent action, an effective response and within an emergency scenario there may be risks for responders, as well as for those affected. Response time is crucial for affected individuals and environments to be addressed on their needs. In this context, the goal of this work is to support the agents involved in the emergency response, through an application-supported collaborative solution using drones. This solution aims to collect information from the worked emergency scenario, so that, through the collaboration of specialists, there is a greater support for the decision-making made by the responsible agents within this scenario, causing it to occur in a shorter time, thus speeding up the response to the emergency. In this work, the aim was to validate with experts from the Rio de Janeiro Firefighters, who already work with drones, by evaluating the utility of the solution in real scenarios.
|
Jorge Vargas-Florez, Grovher Palomino, Andres Flores, Gloria Valdivia, Carlos Saito, Daniel Arteaga, et al. (2019). Identifying potential landslide location using Unmanned Aerial Vehicles (UAVs). In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: The impact of landslides is determined by the previous state of vulnerability and susceptibility present in a
community. Vulnerability is related to physical aspects and susceptibility is defined as the propensity or
tendency of an area to be affected by the occurrence of a given hazard. Knowledge of geography allows us to
characterize and measure some of these factors. For example, in landslides called huaicos in Peru, these are
related to the existence of a slope and soil type of the hills favorable to the loosening of land masses, as well as
the increase in rainfall and the presence of streams. The use of UAVs (Unmanned Aerial Vehicles, commonly
called drones) for the identification of susceptibility zones is presented in this paper. The result is positive for
using the georeferenced data to identify potential landslide flow using as unique criterion surface slopes.
|
Markus Quaritsch, Robert Kuschnig, Hermann Hellwagner, & Bernard Rinner. (2011). Fast aerial image acquisition and mosaicking for emergency response operations by collaborative UAVs. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Small-scale unmanned aerial vehicles (UAVs) have recently gained a lot of interest for various applications such as surveillance, environmental monitoring and emergency response operations. These battery-powered and easy-to-steer aerial robots are equipped with cameras and can promptly acquire aerial images. In this paper we describe our system of multiple UAVs that are able to fly autonomously over an area of interest and generate an overview image of that area. Intuitive and easy user interaction is a key property of our system: The user specifies the area of interest on an electronic map. The flight routes for the UAVs are automatically computed from this specification and the generated overview is presented in a Google-Earth like user interface. We have tested and demonstrated our multi-UAV system on a large fire service drill. Our system provided a high-resolution overview image of the 5.5 ha large test site with regular updates, proved that it is easy to handle, fast to deploy, and useful for the firefighters.
|
Hans-Peter Thamm, Thomas Ludwig, & Christian Reuter. (2013). Design of a process model for unmanned aerial systems (UAS) in emergencies. In J. Geldermann and T. Müller S. Fortier F. F. T. Comes (Ed.), ISCRAM 2013 Conference Proceedings – 10th International Conference on Information Systems for Crisis Response and Management (pp. 478–487). KIT; Baden-Baden: Karlsruher Institut fur Technologie.
Abstract: The electricity network is one of the most important infrastructures in modern industrialized societies. In the case of power outages, the society becomes aware of their dependence on electricity and organizations responsible for recovery work need precise information about the location and the type of the damage, which are usually not available. Unmanned Aerial Systems (UAS), commonly known as drones, are aircrafts without a human pilot on board and may help to collect this information. While many technical approaches for UAS exist, a systematic process model for using UAS in emergencies based on the organizations needs is still missing. Based on the presentation of current types of UAS, approaches of using UAS and workshops with organizations responsible for recovery work (police and fire department, public administration, power supplier) this paper presents a process model for UAS in emergencies, especially power outages, which takes both theoretical findings and human experiences into consideration.
|
Xaroula Kerasidou, Monika Büscher, & Michael Liegl. (2015). Don?t Drone? Negotiating Ethics of RPAS in Emergency Response. In L. Palen, M. Buscher, T. Comes, & A. Hughes (Eds.), ISCRAM 2015 Conference Proceedings ? 12th International Conference on Information Systems for Crisis Response and Management. Kristiansand, Norway: University of Agder (UiA).
Abstract: This paper explores discourses of automation as a key ethical concern in the development of Remotely Piloted Aircraft Systems for disaster response. We discuss problems arising from ?humanistic? dichotomies that pit human against machine, military against civil uses and experts against laypersons. We explore how it may be possible to overcome human-technology dichotomies.
|
Zelenka, J., Kasanický, T. š, Gatial, E., Balogh, Z., Majlingová, A., Brodrechtova, Y., et al. (2023). Coordination of Drones Swarm for Wildfires Monitoring. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 144–151). Omaha, USA: University of Nebraska at Omaha.
Abstract: As a result of climate change and global weather patterns, large forest fires are becoming more frequent in different parts of the world. The focus of the presented work is on creation of a complex coordination and communication framework for a swarm of drones specially tailored for use in preventing and monitoring of forest fires. The presented algorithm has been testing and evaluating using a computer simulation. The testing and validation in relevant environment is scheduled during a pilot demonstration exercise with real personnel and equipment, which will take place in Slovakia on April 2023. The presented work is a part of the SILVANUS EU H2020 project, whose objective is the creation of a climate resilient forest management platform for forest fire prevention and suppression. SILVANUS draws on environmental, technical, and social science experts to support regional and national authorities responsible for forest fire management in their respective countries.
|