|
Florent Castagnino. (2019). What can we learn from a crisis management exercise ? Trusting social media in a french firefighters' department. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: This paper sets out the methodology and the temporary results of an ongoing research project on the use of social media in crisis management (in France). It discusses the benefits and limits to use an emergency crisis exercise for research purposes. It describes an observation protocol and a coding method that could be replicate to survey further exercises. Some possible processing of the observation data is exposed, and further visualizations of the data are still in progress. One of the first analytical results tackles the way Var?s firefighters consider social media information. For now, social media seem to be regarded as questionable because they do not easily fit into the organizational routine. At the same time, the awareness of the need to use social media is quite strong. On the analytical level, the paper tries to use sociological concepts to describe and explain some results.
|
|
|
Amelie Grangeat, Floriane Brill, Stephane Raclot, & Emmanuel Lapebie. (2016). Mapping of Areas Presenting Specific Risks to Firefighters due to Buried Technical Networks. In A. Tapia, P. Antunes, V.A. Bañuls, K. Moore, & J. Porto (Eds.), ISCRAM 2016 Conference Proceedings ? 13th International Conference on Information Systems for Crisis Response and Management. Rio de Janeiro, Brasil: Federal University of Rio de Janeiro.
Abstract: Vehicles or freight cars on fire below a bridge or inside a tunnel are exceptional events and imply difficult intervention conditions for firefighters. A buried technical network like high voltage electricity line, gas or steam pipeline around such a fire causes additional specifics risks. Vulnerability areas for firefighters are defined as zones where both factors exist: a difficult incident area – like tunnels or bridges over roads/railway lines ? together with a specific risk like buried networks. These areas require intervention teams with specific emergency response capabilities. The present paper proposes a method developed for the Paris Fire Brigade for vulnerability mapping. Results aim at being used by their decision support system dedicated to the mobilization of intervention teams. On the long term, it could improve the allocation of specific responses capabilities intervention teams as soon as the emergency call is treated. Results are debated from an operational point of view.
|
|
|
Markus Quaritsch, Robert Kuschnig, Hermann Hellwagner, & Bernard Rinner. (2011). Fast aerial image acquisition and mosaicking for emergency response operations by collaborative UAVs. In E. Portela L. S. M.A. Santos (Ed.), 8th International Conference on Information Systems for Crisis Response and Management: From Early-Warning Systems to Preparedness and Training, ISCRAM 2011. Lisbon: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Small-scale unmanned aerial vehicles (UAVs) have recently gained a lot of interest for various applications such as surveillance, environmental monitoring and emergency response operations. These battery-powered and easy-to-steer aerial robots are equipped with cameras and can promptly acquire aerial images. In this paper we describe our system of multiple UAVs that are able to fly autonomously over an area of interest and generate an overview image of that area. Intuitive and easy user interaction is a key property of our system: The user specifies the area of interest on an electronic map. The flight routes for the UAVs are automatically computed from this specification and the generated overview is presented in a Google-Earth like user interface. We have tested and demonstrated our multi-UAV system on a large fire service drill. Our system provided a high-resolution overview image of the 5.5 ha large test site with regular updates, proved that it is easy to handle, fast to deploy, and useful for the firefighters.
|
|
|
Marcel Van Berlo, Richelle Van Rijk, & Eric F. T. Buiël. (2005). A PC-based virtual environment for training team decision-making in high-risk situations. In B. C. B. Van de Walle (Ed.), Proceedings of ISCRAM 2005 – 2nd International Conference on Information Systems for Crisis Response and Management (pp. 195–200). Brussels: Royal Flemish Academy of Belgium.
Abstract: Live team training of firefighters has several disadvantages. Firstly, it is costly because many team members and training staff are involved. Secondly, not all team members have the same competency level, and some individuals may just not be ready to train in a team context. Thirdly, live training in high-risk situations is difficult and dangerous. Consequently, critical situations can not be trained adequately. Following a scenario-based and a rapid prototyping approach, we are designing and developing a pc-based virtual training environment to train individual firefighters in making decisions in a team context operating in high-risk situations. This individual training program can better prepare the firefighters for live training, enhancing the effectiveness and efficiency of these team-training exercises. In this paper we describe the training-method, we outline how this is technologically implemented and discuss how we are planning to test the prototype.
|
|