Bjørn Erik Munkvold, Jaziar Radianti, Jan Ketil Rød, Tomasz Opach, Mikael Snaprud, Sofie Pilemalm, et al. (2019). Sharing Incident and Threat Information for Common Situational Understanding. In Z. Franco, J. J. González, & J. H. Canós (Eds.), Proceedings of the 16th International Conference on Information Systems for Crisis Response And Management. Valencia, Spain: Iscram.
Abstract: This paper presents the INSITU research project initiated to provide a systematic approach for effective sharing, integration and use of information from different sources, to establish a common operational picture (COP) and shared situational understanding among multiple actors in emergency response. The solution developed will provide an interactive map display, integrating harmonisation of terminology and collaboration support for information sharing and synthesis. The enhanced COP will also support evaluation and learning from exercises and incidents. The project involves close collaboration with emergency management stakeholders in Norway, for requirements analysis, participatory design, and validation of project deliverables. The research will improve information sharing and decision support in emergency operations centres, which will contribute to improve societal resilience through more effective response capability.
|
|
Brian M. Tomaszewski, & Alan M. MacEachren. (2006). A distributed spatiotemporal cognition approach to visualization in support of coordinated group activity. In M. T. B. Van de Walle (Ed.), Proceedings of ISCRAM 2006 – 3rd International Conference on Information Systems for Crisis Response and Management (pp. 347–351). Newark, NJ: Royal Flemish Academy of Belgium.
Abstract: Technological advances in both distributed cooperative work and web-map services have the potential to support distributed and collaborative time-critical decision-making for crisis response. We address this potential through the theoretical perspective of distributed cognition and apply this perspective to development of a geocollaborationenabled web application that supports coordinated crisis management activities. An underlying goal of our overall research program is to understand how distributed cognition operates across groups working to develop both awareness of the geographic situation within which events unfold, and insights about the processes that have lead to that geographic situation over time. In this paper, we present our preliminary research on a web application that addresses these issues. Specifically, the application (key parts of which are implemented) enables online, asynchronous, map-based interaction between actors, thus supporting distributed spatial and temporal cognition, and, more specifically, situational awareness and subsequent action in the context of humanitarian disaster relief efforts.
|
|
Muhammad Tauhidur Rahman, & Tarek Rashed. (2007). Towards a geospatial approach to post-disaster environmental impact assessment. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 219–226). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Natural disasters often leave profound impacts on the environment. Existing disaster impact assessment methods fall short in facilitating the relief work and in conducting cross-sectional comparison of various facets of such impacts. The development of a standardized index for measuring/monitoring the environmental impacts of disasters is necessary to address this gap. This paper proposes a conceptual framework to study the environmental impacts via remote sensing/GIS based geospatial analytical approach by developing a post-disaster environmental severity index. It considers physical, social and built-in components of the environment and identifies several key indicators of disaster impacts. Through statistical decomposition of a large number of environmental impact indicators, the study proposes a composite post-disaster environmental severity index (PDESI). Mapping of the proposed index would help identification of areas and component of the environment that are severely affected by a disaster, and formulation of disaster mitigation and damage recovery plans accordingly.
|
|
Björn J.E. Johansson, Jiri Trnka, & Rego Granlund. (2007). The effect of geographical information systems on a collaborative command and control task. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 191–200). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: This paper tests the claimed benefits of using geographical information systems (GIS) in emergency response operations. An experimental study comparing command teams using GIS and paper-based maps is presented. The study utilized a combined approach using microworld simulations together with physical artefacts. Participants in the experiment took the role of command teams, facing the task of extinguishing a simulated forest fire. A total of 132 persons, forming 22 teams, participated in the study. In eleven of the teams, the participants were given access to GIS with positioning of fire-brigades as well as sensor data about the fire outbreak. In the other eleven teams, the participants were using paper-based maps. The result shows that teams using GIS performed significantly better than teams with paper-based maps in terms of saved area. Communication volume was considerably reduced in the case of GIS teams. Implications of these results on GIS are discussed as well as methodological considerations for future research.
|
|
Mifan Careem, David Bitner, & Ravindra De Silva. (2007). GIS integration in the Sahana disaster management system. In K. Nieuwenhuis P. B. B. Van de Walle (Ed.), Intelligent Human Computer Systems for Crisis Response and Management, ISCRAM 2007 Academic Proceedings Papers (pp. 211–218). Delft: Information Systems for Crisis Response and Management, ISCRAM.
Abstract: Disaster Management often involves using Information and Communications Technology (ICT) to manage large amounts of data efficiently. Data gathered from disasters are often related to geographic locations, such as the affected geographic region, thus requiring special forms of data management software to utilize and manage them efficiently. Geographic Information Systems (GIS) are specialized database systems with software that can analyze and display data using digitized maps and tables for decision making. Preparing and correctly formatting data for use in a GIS is nontrivial, and it is even more challenging during disasters because of tight time constraints and inherent unpredictability of many natural disasters. This paper describes the important role of GIS in disaster management, and discusses the most common characteristics of GIS and their potential use in disaster response. We follow up with a detailed description of the GIS prototype in the Sahana Disaster Management System.
|
|