López-Catalán, B., & Bañuls, V. A. (2023). A Topic Modeling Approach for Extracting Key City Resilience Indicators. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 944–952). Omaha, USA: University of Nebraska at Omaha.
Abstract: In the field of urban resilience, there is a great diversity of approaches to measuring the level of resilience in cities. This information is scattered among reports and academic articles. In this ongoing research paper, we explore the potential of Topic Modeling to analyze this information, in order to determine cluster indicators for a set of academic papers and resilience frameworks. These clusters are referred to as Key City Resilience Indicators (KCRI), which are used as reference to facilitate the measurement of urban resilience regardless of the context, including all the key dimensions required for cities to achieve resilience. Topic modeling outcomes can be used to generate indicators based on each topic or to automatically classify a new set of indicators in each of the established topics. These results can be applied to any resilience framework
|
|
Shivam Sharma, & Cody Buntain. (2021). An Evaluation of Twitter Datasets from Non-Pandemic Crises Applied to Regional COVID-19 Contexts. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 808–815). Blacksburg, VA (USA): Virginia Tech.
Abstract: In 2020, we have witnessed an unprecedented crisis event, the COVID-19 pandemic. Various questions arise regarding the nature of this crisis data and the impacts it would have on the existing tools. In this paper, we aim to study whether we can include pandemic-type crisis events with general non-pandemic events and hypothesize that including labeled crisis data from a variety of non-pandemic events will improve classification performance over models trained solely on pandemic events. To test our hypothesis we study the model performance for different models by performing a cross validation test on pandemic only held-out sets for two different types of training sets, one containing only pandemic data and the other a combination of pandemic and non-pandemic crisis data, and comparing the results of the two. Our results approve our hypothesis and give evidence of some crucial information propagation upon inclusion of non-pandemic crisis data to pandemic data.
|
|
Antone Evans Jr., Yingyuan Yang, & Sunshin Lee. (2021). Towards Predicting COVID-19 Trends: Feature Engineering on Social Media Responses. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 792–807). Blacksburg, VA (USA): Virginia Tech.
Abstract: During the course of this pandemic, the use of social media and virtual networks has been at an all-time high. Individuals have used social media to express their thoughts on matters related to this pandemic. It is difficult to predict current trends based on historic case data because trends are more connected to social activities which can lead to the spread of coronavirus. So, it's important for us to derive meaningful information from social media as it is widely used. Therefore, we grouped tweets by common keywords, found correlations between keywords and daily COVID-19 statistics and built predictive modeling. The features correlation analysis was very effective, so trends were predicted very well. A RMSE score of 0.0425504, MAE of 0.03295105 and RSQ of 0.5237014 in relation to daily deaths. In addition, we found a RMSE score of 0.07346836, MAE of 0.0491152 and RSQ 0.374529 in relation to daily cases.
|
|
Nilani Algiriyage, Rangana Sampath, Raj Prasanna, Kristin Stock, Emma Hudson-Doyle, & David Johnston. (2021). Identifying Disaster-related Tweets: A Large-Scale Detection Model Comparison. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 731–743). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media applications such as Twitter and Facebook are fast becoming a key instrument in gaining situational awareness (understanding the bigger picture of the situation) during disasters. This has provided multiple opportunities to gather relevant information in a timely manner to improve disaster response. In recent years, identifying crisis-related social media posts is analysed as an automatic task using machine learning (ML) or deep learning (DL) techniques. However, such supervised learning algorithms require labelled training data in the early hours of a crisis. Recently, multiple manually labelled disaster-related open-source twitter datasets have been released. In this work, we create a large dataset with 186,718 tweets by combining a number of such datasets and evaluate the performance of multiple ML and DL algorithms in classifying disaster-related tweets in three settings, namely ``in-disaster'', ``out-disaster'' and ``cross-disaster''. Our results show that the Bidirectional LSTM model with Word2Vec embeddings performs well for the tweet classification task in all three settings. We also make available the preprocessing steps and trained weights for future research.
|
|
Laura Szczyrba, Yang Zhang, Duygu Pamukcu, & Derya Ipek Eroglu. (2020). A Machine Learning Method to Quantify the Role of Vulnerability in Hurricane Damage. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 179–187). Blacksburg, VA (USA): Virginia Tech.
Abstract: Accurate pre-disaster damage predictions and post-disaster damage assessments are challenging because of the complicated interrelationships between multiple damage drivers, including various natural hazards, as well as antecedent infrastructure quality and demographic characteristics. Ensemble decision trees, a family of machine learning algorithms, are well suited to quantify the role of social vulnerability in disaster impacts because they provide interpretable measures of variable importance for predictions. Our research explores the utility of an ensemble decision tree algorithm, Random Forest Regression, for quantifying the role of vulnerability with a case study of Hurricane Mar\'ia. The contributing predictive power of eight drivers of structural damage was calculated as the decrease in model mean squared error. A measure of social vulnerability was found to be the model's leading predictor of damage patterns. An additional algorithm, other methods of quantifying variable importance, and future work are discussed.
|
|