|
Tiberiu Sosea, Iustin Sirbu, Cornelia Caragea, Doina Caragea, & Traian Rebedea. (2021). Using the Image-Text Relationship to Improve Multimodal Disaster Tweet Classification. In Anouck Adrot, Rob Grace, Kathleen Moore, & Christopher W. Zobel (Eds.), ISCRAM 2021 Conference Proceedings – 18th International Conference on Information Systems for Crisis Response and Management (pp. 691–704). Blacksburg, VA (USA): Virginia Tech.
Abstract: In this paper, we show that the text-image relationship of disaster tweets can be used to improve the classification of tweets from emergency situations. To this end, we introduce DisRel, a dataset which contains 4,600 multimodal tweets, collected during the disasters that hit the USA in 2017, and manually annotated with coherence image-text relationships, such as Similar and Complementary. We explore multiple models to detect these relationships and perform a comprehensive analysis into the robustness of these methods. Based on these models, we build a simple feature augmentation approach that can leverage the text-image relationship. We test our methods on 2 tasks in CrisisMMD: Humanitarian Categories and Damage Assessment, and observe an increase in the performance of the relationship-aware methods.
|
|