López-Catalán, B., & Bañuls, V. A. (2023). A Topic Modeling Approach for Extracting Key City Resilience Indicators. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 944–952). Omaha, USA: University of Nebraska at Omaha.
Abstract: In the field of urban resilience, there is a great diversity of approaches to measuring the level of resilience in cities. This information is scattered among reports and academic articles. In this ongoing research paper, we explore the potential of Topic Modeling to analyze this information, in order to determine cluster indicators for a set of academic papers and resilience frameworks. These clusters are referred to as Key City Resilience Indicators (KCRI), which are used as reference to facilitate the measurement of urban resilience regardless of the context, including all the key dimensions required for cities to achieve resilience. Topic modeling outcomes can be used to generate indicators based on each topic or to automatically classify a new set of indicators in each of the established topics. These results can be applied to any resilience framework
|
|
Nurollahian, S., Talegaonkar, I., Bell, A. Z., & Kogan, M. (2023). Factors Affecting Public’s Engagement with Tweets by Authoritative Sources During Crisis. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 459–477). Omaha, USA: University of Nebraska at Omaha.
Abstract: People increasingly use social media at the time of crisis, which produces a social media data deluge, where the public may find it difficult to locate trustworthy and credible information. Therefore, they often turn to authoritative sources: official individuals and organizations who are trusted to provide reliable information. It is then imperative that their credible messages reach and engage the widest possible audience, especially among those affected. In this study, we explore the role of metadata and linguistic factors in facilitating three types of engagement — retweets, replies, and favorites— with posts by authoritative sources. We find that many factors are similarly important across models (popularity, sociability, activity). However, some features are salient for only a specific type of engagement. We conclude by providing guidance to authoritative sources on how they may optimize specific types of engagement: retweets for information propagation, replies for in-depth sense-making, and favorites for cross-purpose visibility.
|
|
Lamsal, R., Read, M. R., & Karunasekera, S. (2023). A Twitter narrative of the COVID-19 pandemic in Australia. In Jaziar Radianti, Ioannis Dokas, Nicolas Lalone, & Deepak Khazanchi (Eds.), Proceedings of the 20th International ISCRAM Conference (pp. 353–370). Omaha, USA: University of Nebraska at Omaha.
Abstract: Social media platforms contain abundant data that can provide comprehensive knowledge of historical and real-time events. During crisis events, the use of social media peaks, as people discuss what they have seen, heard, or felt. Previous studies confirm the usefulness of such socially generated discussions for the public, first responders, and decision-makers to gain a better understanding of events as they unfold at the ground level. This study performs an extensive analysis of COVID-19-related Twitter discussions generated in Australia between January 2020, and October 2022. We explore the Australian Twitterverse by employing state-of-the-art approaches from both supervised and unsupervised domains to perform network analysis, topic modeling, sentiment analysis, and causality analysis. As the presented results provide a comprehensive understanding of the Australian Twitterverse during the COVID-19 pandemic, this study aims to explore the discussion dynamics to aid the development of future automated information systems for epidemic/pandemic management.
|
|
Kamol Roy, MD Ashraf Ahmed, Samiul Hasan, & Arif Mohaimin Sadri, P. D. (2020). Dynamics of Crisis Communications in Social Media: Spatio-temporal and Text-based Comparative Analyses of Twitter Data from Hurricanes Irma and Michael. In Amanda Hughes, Fiona McNeill, & Christopher W. Zobel (Eds.), ISCRAM 2020 Conference Proceedings – 17th International Conference on Information Systems for Crisis Response and Management (pp. 812–824). Blacksburg, VA (USA): Virginia Tech.
Abstract: Social media platforms play critical roles in information dissemination, communication and co-ordination during different phases of natural disasters as it is crucial to know the type of crisis information being disseminated and user concerns. Large-scale Twitter data from hurricanes Irma (Sept. 2017) and Michael (Oct. 2018) are used here to understand the topic dynamics over time by applying the Dynamic Topic Model, followed by a comparative analyses of the differences in such dynamics for these two hurricane scenarios. We performed a spatio-temporal analyses of user activities with reference to the hurricane center location and wind speed. The findings of spatio-temporal analyses show that differences in hurricane path and the affected regions influence user participation and social media activity. Besides, topic dynamics reveals that situational awareness, disruptions, relief action are among the patterns common for both hurricanes; unlike topics such as hurricane evacuation and political situation that are scenario dependent.
|
|
Diana Fischer, Carsten Schwemmer, & Kai Fischbach. (2018). Terror Management and Twitter: The Case of the 2016 Berlin Terrorist Attack. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 459–468). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: There is evidence that people increasingly use social networking sites like Twitter in the aftermath of terrorist attacks to make sense of the events at the collective level. This work-in-progress paper focuses on the content of Twitter messages related to the 2016 terrorist attack on the Berlin Christmas market. We chose topic modeling to investigate the Twitter data and the terror management theory perspective to understand why people used Twitter in the aftermath of the attack. In particular, by connecting people and providing a real-time communication channel, Twitter helps its users collectively negotiate their worldviews and re-establish self-esteem. We provide first results and discuss next steps.
|
|