|
Reza Mazloom, HongMin Li, Doina Caragea, Muhammad Imran, & Cornelia Caragea. (2018). Classification of Twitter Disaster Data Using a Hybrid Feature-Instance Adaptation Approach. In Kees Boersma, & Brian Tomaszeski (Eds.), ISCRAM 2018 Conference Proceedings – 15th International Conference on Information Systems for Crisis Response and Management (pp. 727–735). Rochester, NY (USA): Rochester Institute of Technology.
Abstract: Huge amounts of data that are generated on social media during emergency situations are regarded as troves of critical information. The use of supervised machine learning techniques in the early stages of a disaster is challenged by the lack of labeled data for that particular disaster. Furthermore, supervised models trained on labeled data from a prior disaster may not produce accurate results, given the inherent variation between the current and the prior disasters. To address the challenges posed by the lack of labeled data for a target disaster, we propose to use a hybrid feature-instance adaptation approach based on matrix factorization and the k nearest neighbors algorithm, respectively. The proposed hybrid adaptation approach is used to select a subset of the source disaster data that is representative for the target disaster. The selected subset is subsequently used to learn accurate Naive Bayes classifiers for the target disaster.
|
|